Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) Determine the vector \({{\rm{k}}_i}\) is perpendicular to \({{\rm{v}}_j}\) except at \(i = j\).

(b) Determine the dot product \({{\rm{k}}_i} \cdot {{\rm{v}}_i} = 1\).

(c) Determine the condition \({{\rm{k}}_1} \cdot \left( {{{\rm{k}}_2} \times {{\rm{k}}_3}} \right) = \frac{1}{{{{\rm{v}}_1} \cdot \left( {{{\rm{v}}_2} \times {{\rm{v}}_3}} \right)}}\).

Short Answer

Expert verified

(a) The vector \({{\rm{k}}_i}\) is perpendicular to \({{\rm{v}}_j}\) except at \(i = j\)is shown.

(b) The dot product \({{\rm{k}}_i} \cdot {{\rm{v}}_i} = 1\)is shown.

(c) The condition \({{\rm{k}}_1} \cdot \left( {{{\rm{k}}_2} \times {{\rm{k}}_3}} \right) = \frac{1}{{{{\rm{v}}_1} \cdot \left( {{{\rm{v}}_2} \times {{\rm{v}}_3}} \right)}}\) is shown.

Step by step solution

01

Use the three expressions and perform dot multiplication.

(a)

Using the three given expressions for \({{\bf{k}}_1},{{\bf{k}}_2},{{\bf{k}}_3}\)

\({{\bf{k}}_i} = \frac{{{{\bf{v}}_j} \times {{\bf{v}}_k}}}{{{{\bf{v}}_i} \cdot \left( {{{\bf{v}}_j} \times {{\bf{v}}_k}} \right)}}\)

Dot multiplication with \({{\bf{v}}_j}\)

\({{\bf{v}}_j} \cdot {{\bf{k}}_i} = \frac{{{{\bf{v}}_j} \cdot \left( {{{\bf{v}}_j} \times {{\bf{v}}_k}} \right)}}{{{{\bf{v}}_i} \cdot \left( {{{\bf{v}}_j} \times {{\bf{v}}_k}} \right)}}\)

\({{\bf{v}}_j} \cdot {{\bf{k}}_i} = \frac{{\left( {{{\bf{v}}_j} \times {{\bf{v}}_j}} \right) \cdot {{\bf{v}}_k}}}{{{{\bf{v}}_i} \cdot \left( {{{\bf{v}}_j} \times {{\bf{v}}_k}} \right)}}\)

The cross product of parallel vectors is\(0\).

\(\begin{array}{l}{{\bf{v}}_j} \cdot {{\bf{k}}_i} = \frac{{{\bf{0}} \cdot {{\bf{v}}_k}}}{{{{\bf{v}}_i} \cdot \left( {{{\bf{v}}_j} \times {{\bf{v}}_k}} \right)}}\\{{\bf{v}}_j} \cdot {{\bf{k}}_i} = \frac{0}{{{{\bf{v}}_i} \cdot \left( {{{\bf{v}}_j} \times {{\bf{v}}_k}} \right)}}\\{{\bf{v}}_j} \cdot {{\bf{k}}_i} = {\bf{0}}\end{array}\)

Since two vectors have a zero-dot product only when they are perpendicular, we can conclude that \({{\bf{v}}_j}\) and \({{\bf{k}}_i}\) are perpendicular.

Hence proved

02

Use the three expressions and perform dot multiplication.

(b)

Using the three given expressions for \({{\bf{k}}_1},{{\bf{k}}_2},{{\bf{k}}_3}\)

\({{\bf{k}}_i} = \frac{{{{\bf{v}}_j} \times {{\bf{v}}_k}}}{{{{\bf{v}}_i} \cdot \left( {{{\bf{v}}_j} \times {{\bf{v}}_k}} \right)}}\)

Perform dot multiplication with\({{\bf{v}}_i}\)

\({{\bf{k}}_i} \cdot {{\bf{v}}_i} = \frac{{\left( {{{\bf{v}}_j} \times {{\bf{v}}_k}} \right) \cdot {{\bf{v}}_i}}}{{{{\bf{v}}_i} \cdot \left( {{{\bf{v}}_j} \times {{\bf{v}}_k}} \right)}}\)

\({\bf{u}} \cdot {\bf{v}} = {\bf{v}} \cdot {\bf{u}}\)

\({{\bf{k}}_i} \cdot {{\bf{v}}_i} = \frac{{{{\bf{v}}_i} \cdot \left( {{{\bf{v}}_j} \times {{\bf{v}}_k}} \right)}}{{{{\bf{v}}_i} \cdot \left( {{{\bf{v}}_j} \times {{\bf{v}}_k}} \right)}} = 1\)

Hence proved

03

Concept of property 6 theorem 11.

(c)

It states that\({\bf{a}} \times ({\bf{b}} \times {\bf{c}}) = ({\bf{a}} \cdot {\bf{c}}){\bf{b}} - ({\bf{a}} \cdot {\bf{b}}){\bf{c}}\).

04

Use the three expressions and simplify.

\({{\bf{k}}_2} \times {{\bf{k}}_3} = {{\bf{k}}_2} \times \left( {\frac{{{{\bf{v}}_1} \times {{\bf{v}}_2}}}{{{{\bf{v}}_1} \cdot \left( {{{\bf{v}}_2} \times {{\bf{v}}_3}} \right)}}} \right)\)

Note that\({{\bf{v}}_1} \cdot \left( {{{\bf{v}}_2} \times {{\bf{v}}_3}} \right)\)is a scalar

It is because dot product of any two vectors is a scalar

\(\begin{array}{l}{{\bf{k}}_2} \times {{\bf{k}}_3} = \frac{{{{\bf{k}}_2} \times \left( {{{\bf{v}}_1} \times {{\bf{v}}_2}} \right)}}{{{{\bf{v}}_1} \cdot \left( {{{\bf{v}}_2} \times {{\bf{v}}_3}} \right)}}\\{{\bf{k}}_2} \times {{\bf{k}}_3} = \frac{{\left( {{{\bf{k}}_2} \cdot {{\bf{v}}_2}} \right){{\bf{v}}_1} - \left( {{{\bf{k}}_2} \cdot {{\bf{v}}_1}} \right){{\bf{v}}_2}}}{{{{\bf{v}}_1} \cdot \left( {{{\bf{v}}_2} \times {{\bf{v}}_3}} \right)}}\end{array}\)

From part(b), we know that\({{\bf{k}}_i} \cdot {{\bf{v}}_i} = 1\)

From part(a), we know that\({{\bf{k}}_i} \cdot {{\bf{v}}_j} = 0\)if\(i \ne j\)

Therefore,

\(\begin{array}{l}{{\bf{k}}_2} \times {{\bf{k}}_3} = \frac{{(1){{\bf{v}}_1} - (0){{\bf{v}}_2}}}{{{{\bf{v}}_1} \cdot \left( {{{\bf{v}}_2} \times {{\bf{v}}_3}} \right)}}\\{{\bf{k}}_2} \times {{\bf{k}}_3} = \frac{{{{\bf{v}}_1}}}{{{{\bf{v}}_1} \cdot \left( {{{\bf{v}}_2} \times {{\bf{v}}_3}} \right)}}\end{array}\)

Therefore,

\(\begin{array}{l}{{\bf{k}}_1} \cdot \left( {{{\bf{k}}_2} \times {{\bf{k}}_3}} \right) = {{\bf{k}}_1} \cdot \left( {\frac{{{{\bf{v}}_1}}}{{{{\bf{v}}_1} \cdot \left( {{{\bf{v}}_2} \times {{\bf{v}}_3}} \right)}}} \right)\\{{\bf{k}}_1} \cdot \left( {{{\bf{k}}_2} \times {{\bf{k}}_3}} \right) = \frac{{{{\bf{k}}_1} \cdot {{\bf{v}}_1}}}{{{{\bf{v}}_1} \cdot \left( {{{\bf{v}}_2} \times {{\bf{v}}_3}} \right)}}\end{array}\)

From part(b), we know that\({{\bf{k}}_i} \cdot {{\bf{v}}_i} = 1\)

\({{\bf{k}}_1} \cdot \left( {{{\bf{k}}_2} \times {{\bf{k}}_3}} \right) = \frac{1}{{{{\bf{v}}_1} \cdot \left( {{{\bf{v}}_2} \times {{\bf{v}}_3}} \right)}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free