Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the curvature of the ellipse\(x = 3\cos t,y = 4\sin t\)at the points\((3,0)\) and\((0,4)\).

Short Answer

Expert verified

The curvature of the ellipse at\((3,0)\)is\(\frac{3}{{16}}\)and at\((0,4)\)is\(\frac{4}{9}\).

Step by step solution

01

Definition of the curve

A smooth drawn line or figure on a plane with turns or a bend is called a curve.

02

Evaluating the derivative.

Let \(C\)be a curve defined by the vector function\({\bf{r}}(t)\).

The formula\(k(t) = \frac{{\left| {{{\bf{r}}^\prime }(t) \times {{\bf{r}}^{\prime \prime }}(t)} \right|}}{{{{\left| {{{\bf{r}}^\prime }(t)} \right|}^3}}}\) describes the curvature of the curve\(C\).

Since the ellipse is given with the parametric equations\(x = 2\cos t,y = 4\sin t\), then the vector function of the following form is

\({\bf{r}}(t) = \langle 3\cos t,4\sin t\rangle \)

Let determine the curvature of the curve defined by the vector function\((2)\) .

To do this, first, find the first and second derivatives of\({\bf{r}}(t)\), then the cross product\({{\bf{r}}^\prime }(t) \times {{\bf{r}}^{\prime \prime }}(t)\), the length of the vector\({{\bf{r}}^\prime }(t)\), and replace the obtained results in equation (1).

Differentiate \({\bf{r}}(t)\)twice with respect to\(t\).

\(\begin{aligned}{l}{{\bf{r}}^\prime }(t) = \langle - 3\sin t,4\cos t\rangle {{\bf{r}}^{\prime \prime }}(t)\\ = \langle - 3\cos t, - 4\sin t\rangle \end{aligned}\)

03

Calculate the cross product of vectors\({{\bf{r}}^\prime }(t)\)and\({r^{\prime \prime }}(t)\).

\(\begin{aligned}{l}{{\bf{r}}^\prime }(t) \times {{\bf{r}}^{\prime \prime }}(t) = \left| {\begin{aligned}{*{20}{c}}{\bf{i}}&{\bf{j}}&{\bf{k}}\\{ - 3\sin t}&{4\cos t}&0\\{ - 3\cos t}&{ - 4\sin t}&0\end{aligned}} \right|\\ = {\bf{i}}\left| {\begin{aligned}{*{20}{c}}{4\cos t}&0\\{ - 4\sin t}&0\end{aligned}} \right| - {\bf{j}}\left| {\begin{aligned}{*{20}{c}}{ - 3\sin t}&0\\{ - 3\cos t}&0\end{aligned}} \right| + {\bf{k}}\left| {\begin{aligned}{*{20}{c}}{ - 3\sin t}&{4\cos t}\\{ - 3\cos t}&{ - 4\sin t}\end{aligned}} \right|\\ = {\bf{i}} \cdot 0 - {\bf{j}} \cdot 0 + {\bf{k}}\left( {12{{\sin }^2}t + 12{{\cos }^2}t} \right)\\ = {\bf{k}}\left( {12\left( {{{\sin }^2}t + {{\cos }^2}t} \right)} \right)\\ = 12{\bf{k}}\end{aligned}\)

04

The length of the vectors.

\({\bf{v}} = a{\bf{i}} + b{\bf{j}} + c{\bf{k}}\)is defined as:

\(|{\bf{v}}| = \sqrt {{a^2} + {b^2} + {c^2}} \)

Since, \({{\bf{r}}^\prime }(t) = \langle - 3\sin t,4\cos t\rangle \), it follows that

\(\begin{aligned}{l}\left| {{{\bf{r}}^\prime }(x)} \right| = \sqrt {{{( - 3\sin t)}^2} + {{(4\cos t)}^2} + {0^2}} \\ = \sqrt {9{{\sin }^2}t + 16{{\cos }^2}t} \end{aligned}\)

Substitute \({{\bf{r}}^\prime }(t) \times {{\bf{r}}^{\prime \prime }}(t)\) and \(\left| {{{\bf{r}}^\prime }(t)} \right|\)in equation (1)

\(\begin{aligned}{l}k(x) = \frac{{|12|}}{{{{\left( {\sqrt {9{{\sin }^2}t + 16{{\cos }^2}t} } \right)}^3}}}\\ = \frac{{12}}{{{{\left( {9{{\sin }^2}t + 16{{\cos }^2}t} \right)}^{\frac{3}{2}}}}}\end{aligned}\)

05

Finding the value of curvature

Finally, find the values of the curvature of the ellipse at point \((3,0)\)and\((0,4)\).

Note that point\((3,0)\)corresponds to the parameter\(t = 0\)and point\((0,4)\)to the parameter\(t = \frac{\pi }{2}\).

Substitute the values for\(t\)into equation\((3)\).

So, for\(t = 0\)we have that

\(\begin{aligned}{l}k(0) = \frac{{12}}{{{{\left( {9{{\sin }^2}0 + 16{{\cos }^2}0} \right)}^{\frac{3}{2}}}}}\\ = \frac{{12}}{{{{(9 \cdot 0 + 16 \cdot 1)}^{\frac{3}{2}}}}}\\ = \frac{{12}}{{16\frac{3}{2}}}\\ = \frac{{12}}{{64}}\\ = \frac{3}{{16}}\end{aligned}\)

and for \(t = \frac{\pi }{2}\)

\(\begin{aligned}{l}k\left( {\frac{\pi }{2}} \right) = \frac{{12}}{{{{\left( {9{{\sin }^2}\left( {\frac{\pi }{2}} \right) + 16{{\cos }^2}\left( {\frac{\pi }{2}} \right)} \right)}^{\frac{3}{2}}}}}\\ = \frac{{12}}{{{{(9 \cdot 1 + 16 \cdot 0)}^{\frac{3}{2}}}}}\\ = \frac{{12}}{{{9^{\frac{3}{2}}}}}\\ = \frac{{12}}{{27}}\\ = \frac{4}{9}\end{aligned}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free