Chapter 10: Q48E (page 557)
Show that the diagonals of quadrilateral are perpendicular.
Short Answer
Hence, the diagonals of the quadrilateral are perpendicular to each other.
Chapter 10: Q48E (page 557)
Show that the diagonals of quadrilateral are perpendicular.
Hence, the diagonals of the quadrilateral are perpendicular to each other.
All the tools & learning materials you need for study success - in one app.
Get started for free(a) Examine if\(a \cdot b = a \cdot c\), does it follow that\(b = c\).
(b) Examine if\(a \times b = a \times c\), does it follow that\(b = c\).
(c) Examine if\(a \cdot b = a \cdot c\)and\(a \times b = a \times c\), does it follow that\(b = c\).
To find a dot product \(u \cdot v\) and \(u \cdot w\).
(a) To determine
To find: A nonzero vector orthogonal to the plane through the points \({\bf{P}}\), \({\bf{Q}}\) and \(R\).
(b) To determine
To find: The area of triangle \({\bf{PQ}}R\).
Question: Find the parametric equations for the line through the points \(\left( {0,\frac{1}{2},1} \right)\) and \((2,1, - 3)\) and the symmetric equations for the line through the points \(\left( {0,\frac{1}{2},1} \right)\) and \((2,1, - 3)\).
(a) Let \(P\) be a point not on the plane that passes through the points \(Q\), \(R\), and \(S\). Show that the distance \(d\) from \(P\) to the plane is
\(d = \frac{{|{\bf{a}} \cdot ({\bf{b}} \times {\bf{c}})|}}{{|{\bf{a}} \times {\bf{b}}|}}\)
where \({\bf{a}} = \overrightarrow {QR} ,{\bf{b}} = \overrightarrow {QS} \), and \({\bf{c}} = \overrightarrow {QP} \)
(b) Use the formula in part (a) to find the distance from the point \(P(2,1,4)\) to the plane through the points \(Q(1,0,0)\), \(R(0,2,0)\), and \(S(0,0,3)\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.