Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that the curvature of a plane curve is \(\kappa = \left| {\frac{{d\emptyset }}{{ds}}} \right|\) , where \(\emptyset \) is the angle between \(T\) and \(i\) ; that is, \(\emptyset \) is the angle of inclination of the tangent line.

Short Answer

Expert verified

The curvature of plane is \(\kappa = \left| {\frac{{d\emptyset }}{{ds}}} \right|\) .

Step by step solution

01

Explanation

Write the expression for curvature\(\left( \kappa \right)\).

\(\kappa = \left| {\frac{{dT}}{{ds}}} \right|\)-----(1)

Write the tangent vector\(\left( T \right)\)for plane curve.

\(\begin{aligned}{l}T = \left| T \right|\cos \emptyset i + \left| T \right|\sin \emptyset j\\T = \left| T \right|\left( {\cos \emptyset i + \sin \emptyset j} \right)\end{aligned}\)-----(2)

Here,

\(\emptyset \)is angle between\(T\)and\(i\).

Consider the value of\(\left| T \right| = 1\).

Substitute\(1\)for\(\left| T \right|\)in equation(2),

\(\begin{aligned}{l}T = \left( 1 \right)\left( {\cos \emptyset i + \sin \emptyset j} \right)\\ = \cos \emptyset i + \sin \emptyset j\end{aligned}\)

Re-arrange the term\(\frac{{dT}}{{ds}}\).

\(\begin{aligned}{l}\frac{{dT}}{{ds}} = \left( {\frac{{dT}}{{ds}}} \right)\left( {\frac{{d\emptyset }}{{d\emptyset }}} \right)\\\frac{{dT}}{{ds}} = \left( {\frac{{dT}}{{d\emptyset }}} \right)\left( {\frac{{d\emptyset }}{{ds}}} \right)\end{aligned}\)-----(3)

Find the value of\(\frac{{dT}}{{d\emptyset }}\).

\(\begin{aligned}{l}\frac{{dT}}{{d\emptyset }} = \frac{d}{{d\emptyset }}\left( {\cos \emptyset i + \sin \emptyset j} \right)\\ = - \sin \emptyset i + \cos \emptyset j\end{aligned}\)

Substitute\( - \sin \emptyset i + \cos \emptyset j\)for\(\frac{{dT}}{{d\emptyset }}\)in equation(3),

\(\frac{{dT}}{{ds}} = \left( { - \sin \emptyset i + \cos \emptyset j} \right)\left( {\frac{{d\emptyset }}{{ds}}} \right)\)

Apply modulus on the both sides of equation.

Substitute\(\left| {\frac{{d\emptyset }}{{ds}}} \right|\)for\(\left| {\frac{{dT}}{{ds}}} \right|\)equation(1),

\(\kappa = \left| {\frac{{d\emptyset }}{{ds}}} \right|\)

02

Conclusion

Thus, the curvature of plane curve is \(\kappa = \left| {\frac{{d\emptyset }}{{ds}}} \right|\) .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free