Chapter 10: Q48E (page 590)
If r ( t ) = ( e2t, e-2t , te2t )find T ( 0 ), r'' ( 0 ),and r' ( t ) x r'' ( t )
Short Answer
The solution is
\(\begin{array}{l}r'(t) = ({e^t},(1 + t){e^t},(1 + 2{t^2}){e^{{t^2}}})\\T(1) = \left( {\frac{1}{{\sqrt 3 }},\frac{1}{{\sqrt 3 }},\frac{1}{{\sqrt 3 }}} \right)\\r''(t) = {e^t},(1 + {t^3}){e^t} + 4t{e^{{t^2}}}\\r'(t) \times r''(t) = ({e^t},(1 + t){e^t},(1 + 2{t^2}){e^{{t^2}}})({e^t},(1 + {t^3}){e^t} + 4t{e^{{t^2}}})\end{array}\)