Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find equations of the normal plane and osculating plane of the curve at the given point.

\(x = 2\sin 3t,y = t,z = 2\cos 3t\); \(\left( {0,\pi , - 2} \right)\)

Short Answer

Expert verified

The equation of normal plane and osculating plane of curve with parametric equation \(x = 2\sin 3t\) , \(y = t\) , and \(z = 2\cos 3t\) at points \(\left( {0,\pi , - 2} \right)\) are \(y = \pi + 6x\) and \(x + 6y = 6\pi \) respectively.

Step by step solution

01

Formula used

  1. The vector function with parametric equations\(x = f\left( t \right)\),\(y = g\left( t \right)\), and\(z = h\left( t \right)\)is\(r\left( t \right) = \left\langle {f\left( t \right),g\left( t \right),h\left( t \right)} \right\rangle \).
  2. The tangent vector of a vector function\(r\left( t \right)\)is\(T\left( t \right) = \frac{{r'\left( t \right)}}{{\left| {r'\left( t \right)} \right|}}\).
  3. The normal vector of a vector function\(r\left( t \right)\)is\(N\left( t \right) = \frac{{T'\left( t \right)}}{{\left| {T'\left( t \right)} \right|}}\).
  4. The Bi-normal vector of vector function\(r\left( t \right)\)is\(B\left( t \right) = T\left( t \right) \times N\left( t \right)\).
  5. The equation of plane with vector \(r'\left( t \right) = \left\langle {{r_1},{r_2},{r_3}} \right\rangle \) at point \(\left( {{x_1},{y_1},{z_1}} \right)\) is \({r_1}\left( {x - {x_1}} \right) + {r_2}\left( {y - {y_1}} \right) + {r_3}\left( {z - {z_1}} \right) = 0\) .
02

Calculation

The given parametric equations of plane are\(x = 2\sin 3t\),\(y = t\), and\(z = 2\cos 3t\)and point\(\left( {0,\pi , - 2} \right)\).

Then, by formula(1) the vector equation with given parametric equations is\(r\left( t \right) = \left\langle {2\sin 3t,t,2\cos 3t} \right\rangle \).

Equate the components of\(r\left( t \right)\)with point\(\left( {0,\pi , - 2} \right)\)as follows.

\(\begin{aligned}{l}2\sin 3t = 0\\t = \pi \\2\cos 3t = - 2\end{aligned}\)

Hence, the value of\(t\)is\(\pi \).

Compute the first derivative of\(r\left( t \right) = \left\langle {2\sin 3t,t,2\cos 3t} \right\rangle \)with respect to\(t\)on both sides.

Calculate the derivative value\(r'\left( t \right)\)at point\(t = \pi \).

\(\begin{aligned}{l}r'\left( \pi \right) = \left\langle {6\cos 3\left( \pi \right),1, - 6\sin 3\left( \pi \right)} \right\rangle \\ = \left\langle {6\cos 3\pi ,1, - \sin 3\pi } \right\rangle \\ = \left\langle {6\left( { - 1} \right),1,6\left( 0 \right)} \right\rangle \\ = \left\langle { - 6,1,0} \right\rangle \end{aligned}\)

Apply the formula(5) and obtain the equation of normal plane of vector\(r'\left( \pi \right) = \left\langle { - 6,1,0} \right\rangle \)at the point\(\left( {0,\pi , - 2} \right)\).

\(\begin{aligned}{l} - 6\left( {x - 0} \right) + 1\left( {y - \pi } \right) + 0\left( {z + 2} \right) = 0\\ - 6x + y - \pi + 0 = 0\\y = \pi + 6x\end{aligned}\)

The magnitude of\(r'\left( t \right) = \left\langle {6\cos 3t,1, - 6\sin 3t} \right\rangle \)is obtained as follows.

Substitute\(r'\left( t \right) = \left\langle {6\cos 3t,1, - 6\sin 3t} \right\rangle \)and\(\left| {r'\left( t \right)} \right| = \sqrt {37} \)in formula(2) to obtain the tangent vector of a vector function\(r\left( t \right)\).

\(\begin{aligned}{l}T\left( t \right) = \frac{{\left\langle {6\cos 3t,1, - 6\sin 3t} \right\rangle }}{{\sqrt {37} }}\\ = \left\langle {\frac{{6\cos 3t}}{{\sqrt {37} }},\frac{1}{{\sqrt {37} }},\frac{{ - 6\sin 3t}}{{\sqrt {37} }}} \right\rangle \end{aligned}\)

Compute the first derivative of\(T\left( t \right) = \left\langle {\frac{{6\cos 3t}}{{\sqrt {37} }},\frac{1}{{\sqrt {37} }},\frac{{ - 6\sin 3t}}{{\sqrt {37} }}} \right\rangle \)with respect to\(t\).

\(\begin{aligned}{l}T'\left( t \right) = \frac{d}{{dt}}\left\langle {\frac{{6\cos 3t}}{{\sqrt {37} }},\frac{1}{{\sqrt {37} }},\frac{{ - 6\sin 3t}}{{\sqrt {37} }}} \right\rangle \\ = \left\langle {\frac{d}{{dt}}\left( {\frac{{6\cos 3t}}{{\sqrt {37} }}} \right),\frac{d}{{dt}}\left( {\frac{1}{{\sqrt {37} }}} \right),\frac{d}{{dt}}\left( {\frac{{ - 6\sin 3t}}{{\sqrt {37} }}} \right)} \right\rangle \\ = \left\langle {\frac{{ - 18\sin 3t}}{{\sqrt {37} }},0,\frac{{ - 18\cos 3t}}{{\sqrt {37} }}} \right\rangle \end{aligned}\)

The magnitude of\(T'\left( t \right) = \left\langle {\frac{{ - 18\sin 3t}}{{\sqrt {37} }},0,\frac{{ - 18\cos 3t}}{{\sqrt {37} }}} \right\rangle \)is obtained as follows.

Substitute\(T'\left( t \right) = \left\langle {\frac{{ - 18\sin 3t}}{{\sqrt {37} }},0,\frac{{ - 18\cos 3t}}{{\sqrt {37} }}} \right\rangle \)and\(\left| {T'\left( t \right)} \right| = \frac{{18}}{{\sqrt {37} }}\)in formula(3) to obtain the normal vector of a vector function\(r\left( t \right)\).

\(\begin{aligned}{l}N\left( t \right) = \frac{{\left\langle {\frac{{ - 18\sin 3t}}{{\sqrt {37} }},0,\frac{{ - 18\cos 3t}}{{\sqrt {37} }}} \right\rangle }}{{\frac{{18}}{{\sqrt {37} }}}}\\ = \frac{{\sqrt {37} }}{{18}}\left\langle {\frac{{ - 18\sin 3t}}{{\sqrt {37} }},0,\frac{{ - 18\cos 3t}}{{\sqrt {37} }}} \right\rangle \\ = \left\langle { - \sin 3t,0, - \cos 3t} \right\rangle \end{aligned}\)

Note that, the cross product of\(u\left( t \right) = \left\langle {{u_1}\left( t \right),{u_2}\left( t \right),{u_3}\left( t \right)} \right\rangle \)and\(v\left( t \right) = \left\langle {{v_1}\left( t \right),{v_2}\left( t \right),{v_3}\left( t \right)} \right\rangle \)is given by;

\(\begin{aligned}{l}u\left( t \right) \times v\left( t \right) = \left| {\begin{aligned}{*{20}{c}}i&j&k\\{{u_1}\left( t \right)}&{{u_2}\left( t \right)}&{{u_3}\left( t \right)}\\{{v_1}\left( t \right)}&{{v_2}\left( t \right)}&{{v_3}\left( t \right)}\end{aligned}} \right|\\ = \left\langle {\left( {\left( {{u_2}\left( t \right){v_3}\left( t \right) - {v_2}\left( t \right){u_3}\left( t \right)} \right)} \right),\left( { - \left( {{u_1}\left( t \right){v_3}\left( t \right) - {v_1}\left( t \right){u_3}\left( t \right)} \right)} \right),\left( {\left( {{u_1}\left( t \right){v_2}\left( t \right) - {v_1}\left( t \right){u_2}\left( t \right)} \right)} \right)} \right\rangle \end{aligned}\)

Substitute\(T\left( t \right) = \left\langle {\frac{{6\cos 3t}}{{\sqrt {37} }},\frac{1}{{\sqrt {37} }},\frac{{ - 6\sin 3t}}{{\sqrt {37} }}} \right\rangle \)and\(N\left( t \right) = \left\langle { - \sin 3t,0, - \cos 3t} \right\rangle \)in the formula(4) to obtain bi-normal vector of vector function\(r\left( t \right)\).

\(B\left( t \right) = T\left( t \right) \times N\left( t \right)\)

\(\begin{aligned}{l} = \left\langle {\frac{{6\cos 3t}}{{\sqrt {37} }},\frac{1}{{\sqrt {37} }},\frac{{ - 6\sin 3t}}{{\sqrt {37} }}} \right\rangle \times \left\langle { - \sin 3t,0, - \cos 3t} \right\rangle \\\left( {\left( {\left( {\frac{1}{{\sqrt {37} }}} \right)\left( { - \cos 3t} \right) - \left( 0 \right)\left( {\frac{{ - 6\sin 3t}}{{\sqrt {37} }}} \right)} \right)} \right),\\ = \left\langle {\left( { - \left( {\left( {\frac{{6\cos 3t}}{{\sqrt {37} }}} \right)\left( { - \cos 3t} \right) - \left( { - \sin 3t} \right)\left( {\frac{{ - 6\sin 3t}}{{\sqrt {37} }}} \right)} \right)} \right),} \right\rangle \\\left( {\left( {\left( {\frac{{6\cos 3t}}{{\sqrt {37} }}} \right)\left( 0 \right) - \left( { - \sin 3t} \right)\left( {\frac{1}{{\sqrt {37} }}} \right)} \right)} \right)\\ = \left\langle {\frac{{ - \cos 3t}}{{\sqrt {37} }} - 0,\frac{{6{{\cos }^2}3t}}{{\sqrt {37} }} + \frac{{6{{\sin }^2}3t}}{{\sqrt {37} }},0 - \frac{{ - \sin 3t}}{{\sqrt {37} }}} \right\rangle \\ = \left\langle {\frac{{ - \cos 3t}}{{\sqrt {37} }},\frac{6}{{\sqrt {37} }},\frac{{ - \sin 3t}}{{\sqrt {37} }}} \right\rangle \end{aligned}\)

Calculate the derivative value\(B\left( t \right)\)at the point\(t = \pi \).

\(\begin{aligned}{l}B\left( \pi \right) = \left\langle {\frac{{ - \cos 3\left( \pi \right)}}{{\sqrt {37} }},\frac{6}{{\sqrt {37} }},\frac{{ - \sin 3\left( \pi \right)}}{{\sqrt {37} }}} \right\rangle \\ = \left\langle {\frac{{ - \left( { - 1} \right)}}{{\sqrt {37} }},\frac{6}{{\sqrt {37} }},\frac{0}{{\sqrt {37} }}} \right\rangle \\ = \left\langle {\frac{1}{{\sqrt {37} }},\frac{6}{{\sqrt {37} }},0} \right\rangle \end{aligned}\)

Find the equation of osculating plane of vector\(B\left( \pi \right) = \left\langle {\frac{1}{{\sqrt {37} }},\frac{6}{{\sqrt {37} }},0} \right\rangle \)at point\(\left( {0,\pi , - 2} \right)\)by using formula(5).

\(\begin{aligned}{l}\frac{1}{{\sqrt {37} }}\left( {x - 0} \right) + \frac{6}{{\sqrt {37} }}\left( {y - \pi } \right) + 0\left( {z + 2} \right) = 0\\\frac{1}{{\sqrt {37} }}x + \frac{6}{{\sqrt {37} }}y - \frac{6}{{\sqrt {37} }}\pi + 0 = 0\\\frac{x}{{\sqrt {37} }} + \frac{{6y}}{{\sqrt {37} }} = \frac{{6\pi }}{{\sqrt {37} }}\\x + 6y = 6\pi \end{aligned}\)

Thus, the equation of normal plane and osculating plane of curve with parametric equations \(x = 2\sin 3t\) , \(y = t\) , and \(z = 2\cos 3t\) at point \(\left( {0,\pi , - 2} \right)\) are \(y = \pi + 6x\) and \(x + 6y = 6\pi \) respectively.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) Find whether the statement (Two lines parallel to a third line are parallel) is true or false in \({R^3}\).

(b) Find whether the statement (Two lines perpendicular to a third line are parallel) is true or false in \({R^3}\).

(c) Find whether the statement (Two planes parallel to a third plane are parallel) is true or false in \({R^3}\).

(d) Find whether the statement (Two planes perpendicular to a third plane are parallel) is true or false in \({R^3}\).

(e) Find whether the statement (Two lines parallel to a plane are parallel) is true or false in \({R^3}\).

(f) Find whether the statement (Two lines perpendicular to a plane are parallel) is true or false in \({R^3}\).

(g) Find whether the statement (Two planes parallel to a line are parallel) is true or false in \({R^3}\).

(h) Find whether the statement (Two planes perpendicular to a line are parallel) is true or false in \({R^3}\).

(i) Find whether the statement (Two planes either intersect or are parallel) is true or false in \({R^3}\).

(j) Find whether the statement (Two line either intersect or are parallel) is true or false in \({R^3}\).

(k) Find whether the statement (A plane and line either intersect or are parallel) is true or false in \({R^3}\).

To describe the set of all points for condition \(\left| {{\bf{r}} - {{\bf{r}}_1}} \right| + \left| {{\bf{r}} - {{\bf{r}}_2}} \right| = k\).

Show the equation \(0 \times {\rm{a}} = 0 = {\rm{a}} \times 0\) for any vector \({\rm{a}}\) in \({V_3}\).

To determine the meaning of the dot product \({\rm{A}} \cdot {\rm{P}}\).

(a) Let \(P\) be a point not on the line \(L\) that passes through the points \(Q\) and \(R\). Show that the distance \(d\) from the point \(P\) to the line \(L\) is

\(d = \frac{{|{\bf{a}} \times {\bf{b}}|}}{{|{\bf{a}}|}}\)

where \({\bf{a}} = \overrightarrow {QR} \) and \({\bf{b}} = \overrightarrow {QP} \).

(b) Use the formula in part (a) to find the distance from the point \(P(1,1,1)\) to the line through \(Q(0,6,8)\) and \(R( - 1,4,7)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free