Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

To find: The volume of the parallelepiped determined with adjacent edges PQ, PR and PS.

Short Answer

Expert verified

The volume of the parallelepiped with the adjacent edges PQ, PR and PS is \(16\) cubic units.

Step by step solution

01

Concept of parallelepiped with the help of Formula’s

Consider two three-dimensional vectors such as,

\(\begin{array}{l}a = \left\langle {{a_1},{a_2},{a_3}} \right\rangle \\{\rm{b}} = \left\langle {{b_1},{b_2},{b_3}} \right\rangle \end{array}\)

Write the expression for cross product between\(a\)and\({\rm{b}}\)vectors.

\(a \times b = \left| {\begin{array}{*{20}{c}}{\rm{i}}&{\rm{j}}&{\rm{k}}\\{{a_1}}&{{a_2}}&{{a_3}}\\{{b_1}}&{{b_2}}&{{b_3}}\end{array}} \right|(1)\)

Write the expression for dot product between\(a\)and\({\rm{b}}\)vectors.

\(a \cdot b = {a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}(2)\)

Write the expression to calculate the parallelepiped's volume.

\(V = |{\rm{a}} \cdot ({\rm{b}} \times {\rm{c}})|(3)\)

02

Volume of parallelepiped by calculating through Formula.

\(P = ( - 2,1,0),Q = (2,3,2){\rm{ and R}} = (1,4, - 1)andS = (3,6,1)\)

Consider the adjacent edges as \({\rm{a}} = \overrightarrow {PQ} ,\;{\rm{b}} = \overrightarrow {PR} \) and \({\rm{c}} = \overrightarrow {PS} \)

Find \({\rm{a}} = \overrightarrow {PQ} \).

\(\begin{array}{l}\overrightarrow {PQ} = Q(2,3,2) - P( - 2,1,0)\\\overrightarrow {PQ} = \langle (2 + 2),(3 - 1),(2 - 0)\rangle \\\overrightarrow {PQ} = \langle 4,2,2\rangle \end{array}\)

Find \({\rm{b}} = \overrightarrow {PR} \).

\(\begin{array}{l}\overrightarrow {PR} = R(1,4, - 1) - P( - 2,1,0)\\\overrightarrow {PR} = \langle (1 + 2),(4 - 1),( - 1 - 0)\rangle \\\overrightarrow {PR} = \langle 3,3, - 1\rangle \end{array}\)

Find \({\rm{c}} = \overrightarrow {PS} \).

\(\begin{array}{l}\overrightarrow {PS} = S(3,6,1) - P( - 2,1,0)\\\overrightarrow {PS} = \langle (3 + 2),(6 - 1),(1 - 0)\rangle \\\overrightarrow {PS} = \langle 5,5,1\rangle \end{array}\)

Modify equation (\(1\)).

\(b \times c = \left| {\begin{array}{*{20}{c}}{\rm{i}}&{\rm{j}}&{\rm{k}}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}} \right|\)

We can substitute \(3\) for \({b_1},3\) for \({b_2}, - 1\) for \({b_3},5\) for \({c_1},1\) for \({c_2}\) and \(1\) for \({c_3}\),

\(\begin{array}{l}b \times c = \left| {\begin{array}{*{20}{c}}{\rm{i}}&{\rm{j}}&{\rm{k}}\\3&3&{ - 1}\\5&5&1\end{array}} \right|\\b \times c = \left| {\begin{array}{*{20}{l}}3&{ - 1}\\5&1\end{array}} \right|{\rm{i}} - \left| {\begin{array}{*{20}{l}}3&{ - 1}\\5&1\end{array}} \right|{\rm{j}} + \left| {\begin{array}{*{20}{l}}3&3\\5&5\end{array}} \right|{\rm{k}}\\b \times c = (3 + 5){\rm{i}} - (3 + 5){\rm{j}} + (15 - 15){\rm{k}}\\b \times c = 8{\rm{i - }}8{\rm{j}} - 0{\rm{k}}\end{array}\)S

Modify equation \(\left( 2 \right)\)

\(a \cdot (b \times c) = {a_1}\left( {{b_1} \times {c_1}} \right) + {a_2}\left( {{b_2} \times {c_2}} \right) + {a_3}\left( {{b_3} \times {c_3}} \right)\)

We are substituting \(4\) for \({a_1},2\) for \({a_2},2\) for \({a_3},8\) for \(\left( {{b_1} \times {c_1}} \right), - 8\) for \(\left( {{b_2} \times {c_2}} \right)\) and \(0\) for \(\left( {{b_3} \times {c_3}} \right)\),

\(\begin{array}{l}a \cdot (b \times c) = 4(8) + 2( - 8) + 2(0)\\a \cdot (b \times c) = 32 - 16 + 0\\a \cdot (b \times c) = 16\end{array}\)

We are substituting \(16\) for \(a \cdot (b \times c)\) in equation \((3)\)

\(\begin{array}{l}V = |16|\\V = 16\end{array}\)

Thus, the volume of the parallelepiped determined by the vectors \(a\), \(b\) and \(c\) is \(16\) cubic units.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free