Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the tangential and normal components of the acceleration vector.

\({\rm{r(t) = costi + co}}{{\rm{s}}^{\rm{2}}}{\rm{tj + si}}{{\rm{n}}^{\rm{2}}}{\rm{tk}}\)

Short Answer

Expert verified

Tangential and normal components of the acceleration vectors are:

\(\begin{aligned}{c}{a_T} = \frac{{2\sin 4t}}{{\sqrt {1 + 2{{\sin }^2}2t} }}\;\\\;\;{a_N} = \frac{{2\sqrt {2{{\cos }^2}2t} }}{{\sqrt {1 + 2{{\sin }^2}2t} }}\end{aligned}\)

Step by step solution

01

Concept Introduction

The insertion of coordinates in the plane or three-dimensional space separates vector spaces from affine geometry. Vector spaces, in other terms, are mathematical objects. They are the central objects of study in linear algebra because they abstractly capture the geometry and algebra of linear equations.

02

Tangential and normal components of the acceleration vector

Simplify the given values,

\({\bf{r}}(t) = < \left. {t,{{\cos }^2}t,{{\sin }^2}t > } \right\rangle \)

Determine the first and second derivatives,

\(\begin{aligned}{c}{{\bf{r}}^\prime }(t) = < 1,2\cos t( - \sin t),2\sin t\cos t > \\ = < 1, - \sin 2t,\sin 2t > \\{{\bf{r}}^{\prime \prime }}(t) = < 0, - 2\cos 2t,2\cos 2t > \end{aligned}\)

\((2\sin x\cos x = \sin 2x)\)

Find the length of \({{\bf{r}}^\prime }\)

\(\begin{aligned}{c}\left| {{{\bf{r}}^\prime }(t)} \right| = \sqrt {{1^2} + {{( - \sin 2t)}^2} + {{(\sin 2t)}^2}} \\ = \sqrt {1 + {{\sin }^2}2t + {{\sin }^2}2t} \\ = \sqrt {1 + 2{{\sin }^2}2t} \end{aligned}\)

Fill in the component formula as usual:

\(\begin{aligned}{c}{a_T} = \frac{{{{\bf{r}}^\prime }(t) \cdot {{\bf{r}}^{\prime \prime }}(t)}}{{\left| {{{\bf{r}}^\prime }(t)} \right|}}\\ = \frac{{1(0) + ( - \sin 2t)( - 2\cos 2t) + \sin 2t(2\cos 2t)}}{{\sqrt {1 + 2{{\sin }^2}2t} }}\end{aligned}\)

\( = \frac{{2\sin 2t\cos 2t + 2\sin 2t\cos 2t}}{{\sqrt {1 + 2{{\sin }^2}2t} }}\)

\(\begin{aligned}{c} = \frac{{2 \cdot 2\sin 2t\cos 2t}}{{\sqrt {1 + 2{{\sin }^2}2t} }}\\ = \frac{{2\sin 4t}}{{\sqrt {1 + 2{{\sin }^2}2t} }}\end{aligned}\)

03

Finding the cross product

Find the cross product first for the normal component.

\(\begin{aligned}{l}{{\bf{r}}^\prime }(t) \times {{\bf{r}}^{\prime \prime }}(t)n = < - \sin 2t(2\cos 2t) - \sin 2t( - 2\cos 2t),\sin 2t(0) - 1(2\cos 2t),1( - 2\cos 2t) - ( - \sin 2t)(0) > \\ = < 0, - 2\cos 2t, - 2\cos 2t > \end{aligned}\)

Now, fill in the component formula as usual.

\(\begin{aligned}{c}{a_N} = \frac{{\left| {{{\bf{r}}^\prime }(t) \times {{\bf{r}}^{\prime \prime }}(t)} \right|}}{{\left| {{{\bf{r}}^\prime }(t)} \right|}}\\ = \frac{{\sqrt {{0^2} + {{( - 2\cos 2t)}^2} + {{( - 2\cos 2t)}^2}} }}{{\sqrt {1 + 2{{\sin }^2}2t} }}\end{aligned}\)

\(\begin{aligned}{c} = \frac{{\sqrt {2 \cdot 4{{\cos }^2}2t} }}{{\sqrt {1 + 2{{\sin }^2}2t} }}\\ = \frac{{2\sqrt {2{{\cos }^2}2t} }}{{\sqrt {1 + 2{{\sin }^2}2t} }}\end{aligned}\)

Rewrite the top using absolute value if you wish to keep the value positive:

\(\frac{{2\sqrt 2 |\cos 2t|}}{{\sqrt {1 + 2{{\sin }^2}2t} }}\)

Hence, tangential and normal components of the acceleration vectors are:

\(\begin{aligned}{c}{a_T} = \frac{{2\sin 4t}}{{\sqrt {1 + 2{{\sin }^2}2t} }}\;\\\;\;{a_N} = \frac{{2\sqrt {2{{\cos }^2}2t} }}{{\sqrt {1 + 2{{\sin }^2}2t} }}\end{aligned}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free