Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If \({\rm{u(t)}}\)and \({\rm{v(t)}}\) are differentiable vector functions, then

\(\frac{{\rm{d}}}{{{\rm{dt}}}}{\rm{(u(t) \times v(t)) = }}{{\rm{u}}^'}{\rm{(t) \times }}{{\rm{v}}^'}{\rm{(t)}}{\rm{.}}\)

Short Answer

Expert verified

The statement is false.

Step by step solution

01

Let's take some value for\({\rm{u(t)}}\)and\({\rm{v(t)}}\),

Let,\({\rm{u(t) = ti}}\)and \({\rm{v(t) = tj}}\)

Then,

\({\rm{u(t) \times v(t) = }}{{\rm{t}}^{\rm{2}}}{\rm{k}}\)

02

Differentiate the equation,

\(\frac{{\rm{d}}}{{{\rm{dt}}}}{\rm{\{ u(t) \times v(t)\} = }}\frac{{\rm{d}}}{{{\rm{dt}}}}\left\{ {{{\rm{t}}^{\rm{2}}}} \right\}{\rm{k}}\)

\({\rm{ = 2tk}}\)

03

Differentiate \({\rm{u(t)}}\)and\({\rm{v(t)}}\),

\({{\rm{u}}^'}{\rm{(t) = i}}\)

\({{\rm{v}}^'}{\rm{(t) = j}}\)

\(\begin{aligned}{c}{{\rm{u}}^'}{\rm{(t) \times }}{{\rm{v}}^'}{\rm{(t) = i \times j}}\\{\rm{ = k}}\end{aligned}\)

Therefore, \(\frac{{\rm{d}}}{{{\rm{dt}}}}{\rm{\{ u(t) \times v(t)\} }} \ne {{\rm{u}}^'}{\rm{(t) \times }}{{\rm{v}}^'}{\rm{(t)}}\).

Therefore, the statement is false.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free