Consider the equation of the surface as\({x^2} - {y^2} + {z^2} - 4x - 2y - 2z + 4 = 0\).
Rearrange the above equation to form a standard form as follows.
\(\begin{array}{l}{x^2} - {y^2} + {z^2} - 4x - 2y - 2z + 4 = 0\\\left( {{x^2} - 4x + 4} \right) - \left( {{y^2} + 2y} \right) + \left( {{z^2} - 2z} \right) = 0\\\left( {{x^2} - 4x + 4} \right) - \left( {{y^2} + 2y + 1} \right) + \left( {{z^2} - 2z + 1} \right) = 0\\{(x - 2)^2} - {(y + 1)^2} + {(z - 1)^2} = 0\\{(x - 2)^2} + {(z - 1)^2} = {(y + 1)^2}\end{array}\)
The standard equation\({(x - 2)^2} + {(z - 1)^2} = {(y + 1)^2}\)satisfies the equation of circular cone, which is centred at\((2, - 1,1)\).
By the formula, the surface equation \({x^2} - {y^2} + {z^2} - 4x - 2y - 2z + 4 = 0\) is a Circular cone.