Chapter 10: Q27E (page 565)
Determine the area of the parallelogram with vertices\(A( - 2,1),B(0,4),C(4,2)\) and\(D(2, - 1)\).
Short Answer
The area of the parallelogram with vertices \(A( - 2,1),B(0,4),C(4,2)\) and \(D(2, - 1)\) is 16.
Chapter 10: Q27E (page 565)
Determine the area of the parallelogram with vertices\(A( - 2,1),B(0,4),C(4,2)\) and\(D(2, - 1)\).
The area of the parallelogram with vertices \(A( - 2,1),B(0,4),C(4,2)\) and \(D(2, - 1)\) is 16.
All the tools & learning materials you need for study success - in one app.
Get started for freeTo prove Algebraic proof of property \(2\) as \({\bf{a}} + ({\bf{b}} + {\bf{c}}) = ({\bf{a}} + {\bf{b}}) + {\bf{c}}\).
(a) Determine the vector \({{\rm{k}}_i}\) is perpendicular to \({{\rm{v}}_j}\) except at \(i = j\).
(b) Determine the dot product \({{\rm{k}}_i} \cdot {{\rm{v}}_i} = 1\).
(c) Determine the condition \({{\rm{k}}_1} \cdot \left( {{{\rm{k}}_2} \times {{\rm{k}}_3}} \right) = \frac{1}{{{{\rm{v}}_1} \cdot \left( {{{\rm{v}}_2} \times {{\rm{v}}_3}} \right)}}\).
Find the two unit vectors orthogonal to both \(\langle 3,2,1\rangle \) and \(\langle - 1,1,0\rangle \).
To determine
To verify: The vectors \(u = i + 5j - 2k,v = 3i - j\) and \(w = 5i + 9j - 4k\) are coplanar.
Find a vector equation and the parametric equations for a line through the point \((1,0,6)\) and perpendicular to the plane \(x + 3y + z = 5\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.