Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

To describe: The representation of equation \(x = 5\) in \({\mathbb{R}^3}\).

Short Answer

Expert verified

The equation \(x = 5\) in \({\mathbb{R}^3}\) represents the vertical plane that is parallel to the \(yz\)-plane and it locates 5 units below the \(yz\)-plane.

Step by step solution

01

Concept of \({\mathbb{R}^3}\)

\({\mathbb{R}^3}\)is the three dimensional coordinate system which contains\(x\),\(y\), and\(z\)-coordinates.

02

Represent the given equation in \({\mathbb{R}^3}\)

The equation \(x = 5\) in \({\mathbb{R}^3}\) represents the set \(\{ (x,y,z)\mid x = 5\} \), which is the set of all points in \({\mathbb{R}^3}\) whose \(x\) coordinate is \(5\) and \(y\), \(z\)-coordinates are any values.

The equation \(x = 5\) in \({\mathbb{R}^3}\) is sketched as shown in Figure 1.

From Figure 1, the equation \(x = 5\) in \({\mathbb{R}^3}\) represents the vertical plane and it is parallel to the \(yz\)-plane. It locates \(5\) units below the \(yz\)-plane.

Thus, the equation \(x = 5\) in \({\mathbb{R}^3}\) is described.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free