\(\begin{array}{l}{\rm{Unit vectors }} = \frac{{{\rm{i}} - {\rm{j}} - {\rm{k}}}}{{|{\rm{i}} - {\rm{j}} - {\rm{k}}|}}\\{\rm{Unit vectors}} = \pm \frac{{{\rm{i}} - {\rm{j}} - {\rm{k}}}}{{\sqrt {{{(1)}^2} + {{( - 1)}^2} + {{( - 1)}^2}} }}\\{\rm{Unit vectors}} = \pm \frac{{{\rm{i}} - {\rm{j}} - {\rm{k}}}}{{\sqrt {1 + 1 + 1} }}\\{\rm{Unit vectors}} = \pm \frac{{{\rm{i}} - {\rm{j}} - {\rm{k}}}}{{\sqrt 3 }}\end{array}\)
The unit vectors are \(\frac{1}{{\sqrt 3 }}{\rm{i}} - \frac{1}{{\sqrt 3 }}{\rm{j}} - \frac{1}{{\sqrt 3 }}{\rm{k}}\) and\( - \frac{1}{{\sqrt 3 }}{\rm{i}} + \frac{1}{{\sqrt 3 }}{\rm{j}} + \frac{1}{{\sqrt 3 }}{\rm{k}}\).
Thus, the two unit vectors orthogonal to both \({\rm{j}} - {\rm{k}}\) and \({\rm{i}} + {\rm{j}}\).are \(\frac{1}{{\sqrt 3 }}{\rm{i}} - \frac{1}{{\sqrt 3 }}{\rm{j}} - \frac{1}{{\sqrt 3 }}{\rm{k}}\) and\( - \frac{1}{{\sqrt 3 }}{\rm{i}} + \frac{1}{{\sqrt 3 }}{\rm{j}} + \frac{1}{{\sqrt 3 }}{\rm{k}}\).