Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the two unit vectors orthogonal to both \(\langle 3,2,1\rangle \) and \(\langle - 1,1,0\rangle \).

Short Answer

Expert verified

The two unit vectors are \(\left\langle { - \frac{1}{{3\sqrt 3 }}, - \frac{1}{{3\sqrt 3 }},\frac{5}{{3\sqrt 3 }}} \right\rangle \) and\(\left\langle {\frac{1}{{3\sqrt 3 }},\frac{1}{{3\sqrt 3 }}, - \frac{5}{{3\sqrt 3 }}} \right\rangle \).

Step by step solution

01

Theorem used

The cross product of two vectors is orthogonal to both vectors, when their dot product is equal to zero.

Write the expression to find unit vector of vector\({\bf{a}}\)

Unit vector\( = \frac{{\rm{a}}}{{|{\rm{a}}|}}\)

02

Find the cross product between \(\langle 3,2,1\rangle \) and \(\langle  - 1,1,0\rangle \)

As given, \(\langle 3,2,1\rangle \) and \(\langle - 1,1,0\rangle \).

Find the cross product between \(\langle 3,2,1\rangle \) and \(\langle - 1,1,0\rangle \)

\(\begin{array}{l}\langle 3,2,1\rangle \times \langle - 1,1,0\rangle = \left| {\begin{array}{*{20}{c}}{\rm{i}}&{\rm{j}}&{\rm{k}}\\3&2&1\\{ - 1}&1&0\end{array}} \right|\\\langle 3,2,1\rangle \times \langle - 1,1,0\rangle = \left| {\begin{array}{*{20}{c}}2&1\\1&0\end{array}} \right|{\rm{i}} - \left| {\begin{array}{*{20}{c}}3&1\\{ - 1}&0\end{array}} \right|{\rm{j}} + \left| {\begin{array}{*{20}{c}}3&2\\{ - 1}&1\end{array}} \right|{\rm{k}}\\\langle 3,2,1\rangle \times \langle - 1,1,0\rangle = (0 - 1){\rm{i}} - (0 + 1){\rm{j}} + (3 + 2){\rm{k}}\\\langle 3,2,1\rangle \times \langle - 1,1,0\rangle = - {\rm{i}} - {\rm{j}} + 5{\rm{k}}\end{array}\)

03

Find unit vectors

\(\begin{array}{l}{\rm{Unit vectors }} = \frac{{ - {\rm{i}} - {\rm{j}} + 5{\rm{k}}}}{{| - {\rm{i}} - {\rm{j}} + 5{\rm{k}}|}}\\{\rm{Unit vectors }} = \pm \frac{{\langle - 1, - 1,5\rangle }}{{\sqrt {{{( - 1)}^2} + {{( - 1)}^2} + {{(5)}^2}} }}\\{\rm{Unit vectors }} = \pm \frac{{\langle - 1, - 1,5\rangle }}{{\sqrt {1 + 1 + 25} }}\\{\rm{Unit vectors }} = \pm \frac{{\langle - 1, - 1,5\rangle }}{{\sqrt {27} }}\end{array}\)

\(\begin{array}{l}{\rm{Unit vectors }} = \pm \frac{{\langle - 1, - 1,5\rangle }}{{3\sqrt 3 }}\\{\rm{Unit vectors}} = \pm \left\langle {\frac{{ - 1}}{{3\sqrt 3 }},\frac{{ - 1}}{{3\sqrt 3 }},\frac{5}{{3\sqrt 3 }}} \right\rangle \end{array}\)

The unit vectors are \(\left\langle { - \frac{1}{{3\sqrt 3 }}, - \frac{1}{{3\sqrt 3 }},\frac{5}{{3\sqrt 3 }}} \right\rangle \) and\(\left\langle {\frac{1}{{3\sqrt 3 }},\frac{1}{{3\sqrt 3 }}, - \frac{5}{{3\sqrt 3 }}} \right\rangle \).

Thus, the two unit vectors are \(\left\langle { - \frac{1}{{3\sqrt 3 }}, - \frac{1}{{3\sqrt 3 }},\frac{5}{{3\sqrt 3 }}} \right\rangle \) and\(\left\langle {\frac{1}{{3\sqrt 3 }},\frac{1}{{3\sqrt 3 }}, - \frac{5}{{3\sqrt 3 }}} \right\rangle \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free