Chapter 10: Q18E (page 564)
Show the \(a \times (b \times c) \ne (a \times b) \times c\).
Short Answer
\(a \times (b \times c) \ne (a \times b) \times c\) is shown.
Step by step solution
Formula used
Consider the general expression to find the cross product of\({\bf{a}}\)and\({\bf{b}}\).
\({\rm{a}} \times {\rm{b}} = \left| {\begin{array}{*{20}{c}}{\rm{i}}&{\rm{j}}&{\rm{k}}\\{{a_1}}&{{a_2}}&{{a_3}}\\{{b_1}}&{{b_2}}&{{b_3}}\end{array}} \right| \ldots \ldots \ldots (1)\)
Modify equation (1)
\({\rm{b}} \times {\rm{c}} = \left| {\begin{array}{*{20}{c}}{\rm{i}}&{\rm{j}}&{\rm{k}}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}} \right|\)
Find the \(a \times (b \times c)\)
As given, \({\rm{a}} = \langle 1,0,1\rangle ,{\rm{b}} = \langle 2,1, - 1\rangle \) and \({\rm{c}} = \langle 0,1,3\rangle \)
Substitute 2 for \({b_1},2\) for \({b_2}, - 1\) for \({b_3},0\) for \({c_1},1\) for \({c_2}\) and 3 for \({c_3}\),
\(\begin{array}{l}{\rm{b}} \times {\rm{c}} = \left| {\begin{array}{*{20}{c}}{\rm{i}}&{\rm{j}}&{\rm{k}}\\2&1&{ - 1}\\0&1&3\end{array}} \right| = \left| {\begin{array}{*{20}{c}}1&{ - 1}\\1&3\end{array}} \right|{\rm{i}} - \left| {\begin{array}{*{20}{c}}2&{ - 1}\\0&3\end{array}} \right|{\rm{j}} + \left| {\begin{array}{*{20}{c}}2&1\\0&1\end{array}} \right|{\rm{k}}\\{\rm{b}} \times {\rm{c}} = (3 + 1){\rm{i}} - (6 + 0){\rm{j}} + (2 - 0){\rm{k}}\\{\rm{b}} \times {\rm{c}} = 4{\rm{i}} - 6{\rm{j}} + 2{\rm{k}}\end{array}\)
Find \(a \times (b \times c)\)
\(\begin{array}{l}a \times (b \times c) = \left| {\begin{array}{*{20}{c}}i&j&k\\1&0&1\\4&{ - 6}&2\end{array}} \right|\\a \times (b \times c) = \left| {\begin{array}{*{20}{c}}0&1\\{ - 6}&2\end{array}} \right|{\rm{i}} - \left| {\begin{array}{*{20}{c}}1&1\\4&2\end{array}} \right|j + \left| {\begin{array}{*{20}{c}}1&0\\4&{ - 6}\end{array}} \right|k\\a \times (b \times c) = (0 + 6)i - (2 - 4)j + ( - 6 - 0)k\\a \times (b \times c) = 6i + 2j - 6k \ldots \ldots \ldots (2)\end{array}\)
Substitute 1 for \({a_1},0\) for \({a_2},1\) for \({a_3},2\) for \({b_1},2\) for \({b_2}\) and \( - 1\) for \({b_3}\) in equation (1),
\(\begin{array}{l}a \times b = \left| {\begin{array}{*{20}{c}}i&j&k\\1&0&1\\2&1&{ - 1}\end{array}} \right|\\a \times b = \left| {\begin{array}{*{20}{c}}0&1\\1&{ - 1}\end{array}} \right|i - \left| {\begin{array}{*{20}{c}}1&1\\2&{ - 1}\end{array}} \right|j + \left| {\begin{array}{*{20}{c}}1&0\\2&1\end{array}} \right|k\\a \times b = (0 - 1)i - ( - 1 - 2)j + (1 - 0)k\\a \times b = - i + 3j + k\end{array}\)
Find the \((a \times b) \times c\)
Find \((a \times b) \times c\)
\(\begin{array}{l}(a \times b) \times c = \left| {\begin{array}{*{20}{c}}i&j&k\\{ - 1}&3&1\\0&1&3\end{array}} \right|\\(a \times b) \times c = \left| {\begin{array}{*{20}{l}}3&1\\1&3\end{array}} \right|i - \left| {\begin{array}{*{20}{c}}{ - 1}&1\\0&3\end{array}} \right|j + \left| {\begin{array}{*{20}{c}}{ - 1}&3\\0&1\end{array}} \right|k\\(a \times b) \times c = (9 - 1)i - ( - 3 - 0)j + ( - 1 - 0)k\\(a \times b) \times c = 8i + 3j - k \ldots \ldots \ldots (3)\end{array}\)
Since equation (2) and equation (3) are not equal, then the given condition \(a \times (b \times c) \ne (a \times b) \times c\)is obtained.
Thus, \(a \times (b \times c) \ne (a \times b) \times c\) is shown.
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!