Chapter 10: Q17E (page 564)
Find the cross product between \({\rm{a}}\) and \({\rm{b}}\) and \({\rm{b}}\) and \({\rm{a}}\).
Short Answer
\(a \times b\)is\( - 7i + 10j + 8k\).
\(b \times a\) is \(7i - 10j - 8k\).
Chapter 10: Q17E (page 564)
Find the cross product between \({\rm{a}}\) and \({\rm{b}}\) and \({\rm{b}}\) and \({\rm{a}}\).
\(a \times b\)is\( - 7i + 10j + 8k\).
\(b \times a\) is \(7i - 10j - 8k\).
All the tools & learning materials you need for study success - in one app.
Get started for freeTo find the three angles of the triangle.
To determine whether the given vectors are orthogonal, parallel, or neither.
(a) For vector\({\rm{a}} = \langle - 5,3,7\rangle \)and\({\rm{b}} = \langle 6, - 8,2\rangle \)
(b) For vector\(a = \langle 4,6\rangle \)and\(b = \langle - 3,2\rangle \)
(c) For vector\({\bf{a}} = - {\bf{i}} + 2{\bf{j}} + 5{\bf{k}}\)and\({\bf{b}} = - 3{\bf{i}} + 4{\bf{j}} - {\bf{k}}\)
(d) For vector\({\bf{a}} = 2{\bf{i}} + 6{\bf{j}} - 4{\bf{k}}\)and\({\bf{b}} = - 3{\bf{i}} - 9{\bf{j}} + 6{\bf{k}}\)
Determine the area of the parallelogram with vertices\(K(1,2,3),L(1,3,6),M(3,8,6)\) and\(N(3,7,3)\).
Prove the property\((a \times b) = - b \times a\).
To find the angle between vectors \(a\) and \(b\) vectors.
What do you think about this solution?
We value your feedback to improve our textbook solutions.