Chapter 10: Q16E (page 579)
Use traces to sketch and identify the surface.
\(4{x^2} + 9{y^2} + z = 0\)
Short Answer
The surface \(4{x^2} + 9{y^2} + z = 0\) is an elliptic paraboloid.
Chapter 10: Q16E (page 579)
Use traces to sketch and identify the surface.
\(4{x^2} + 9{y^2} + z = 0\)
The surface \(4{x^2} + 9{y^2} + z = 0\) is an elliptic paraboloid.
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \({\bf{a}} \cdot {\bf{b}} = \sqrt 3 \) and \({\bf{a}} \times {\bf{b}} = \langle 1,2,2\rangle \), find the angle between \({\bf{a}}\) and \({\bf{b}}\).
(a) Determine the vector \({{\rm{k}}_i}\) is perpendicular to \({{\rm{v}}_j}\) except at \(i = j\).
(b) Determine the dot product \({{\rm{k}}_i} \cdot {{\rm{v}}_i} = 1\).
(c) Determine the condition \({{\rm{k}}_1} \cdot \left( {{{\rm{k}}_2} \times {{\rm{k}}_3}} \right) = \frac{1}{{{{\rm{v}}_1} \cdot \left( {{{\rm{v}}_2} \times {{\rm{v}}_3}} \right)}}\).
A bicycle pedal is pushed by a foot with a \(60 - {\rm{N}}\) force as shown. The shaft of the pedal is \(18\;{\rm{cm}}\) long. Find the magnitude of the torque about \(P\).\(|\tau | = |{\bf{r}}||{\bf{F}}|\sin \theta \)
To d\({\bf{b}} = \left\langle {{b_1},{b_2},{b_3}} \right\rangle \)escribe all set of points for condition \(\left| {{\bf{r}} - {{\bf{r}}_0}} \right| = 1\).
To show
(a) \({\rm{i}} \cdot {\rm{j}} = 0,{\rm{j}} \cdot {\rm{k}} = 0\) and \({\rm{k}} \cdot {\rm{i}} = 0\).
(b) \({\rm{i}} \cdot {\rm{i}} = 1,{\rm{j}} \cdot {\rm{j}} = 1\) and \({\rm{k}} \cdot {\rm{k}} = 1\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.