a)
Given position vector is \(r(t) = \left\langle {{t^2},5t,{t^2} - 16t} \right\rangle \).
Velocity vector can be written as-
\(\begin{aligned}{c}v(t) = r'(t)\\ = \left\langle {2t,5,2t - 16} \right\rangle \end{aligned}\)
Therefore, velocity vector is \(v(t) = \left\langle {2t,5,2t - 16} \right\rangle \).
As speed of the particle is the magnitude of the velocity;
Speed of the particle can be written as-
\(\begin{aligned}{c}|v(t)|\\ = \sqrt {{{(2t)}^2} + {{(5)}^2} + {{(2t - 16)}^2}} \\ = \sqrt {4{t^2} + 25 + 4{t^2} - 64t + 256} \\ = \sqrt {8{t^2} - 64t + 281} \\ = \sqrt {8({t^2} - 8t) + 281} \\ = \sqrt {8({t^2} - 8t + 16) + 153} \\ = \sqrt {8{{(t - 4)}^2} + 153} \end{aligned}\)
Therefore, value of speed will be minimum when \(t = 4\).