Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Reparametrize the curve \(r(t) = \left( {\frac{2}{{{t^2} + 1}} - 1} \right)i + \frac{{2t}}{{{t^2} + 1}}j\)with respect to arc length measured from the point (1, 0) in the direction of increasing . Express the reparametrization in its simplest form. What can you conclude about the curve?

Short Answer

Expert verified

Thus we found that r(t(s)) is a unit circle : \(r(t(s)) = \left\langle {\cos (s),\sin (s)} \right\rangle \)

Step by step solution

01

Step 1: Convert fractions into exponents and find the tangent function

We have given the following curve and we have to reparametize its length from point (1,0).

\(r(t) = \left( {\frac{2}{{{t^2} + 1}} - 1} \right)i + \left( {\frac{{2t}}{{{t^2} + 1}}} \right)j\)

Now let us convert the fractions into exponents so that we can use the product rule.

\(\begin{aligned}{l}\left( {\frac{2}{{{t^2} + 1}} - 1} \right) = 2{({t^2} + 1)^{ - 1}} - 1\\\frac{{2t}}{{{t^2} + 1}} = 2{({t^2} + 1)^{ - 1}}\end{aligned}\)

Next let us find the derivative or tangent function r’(t) of the vector function r(t), that is

\(\begin{aligned}{l}|r'(t)| = 2{({t^2} + 1)^{ - 2}}(2t)i + ( - 2t{({t^2} + 1)^{ - 2}}(2t) + 2{({t^2} + 1)^{ - 1}})j\\ = - 4t{({t^2} + 1)^{ - 2}}i + (( - 4{t^2}){({t^2} + 1)^{ - 2}} + 2{({t^2} + 1)^{ - 1}})j\end{aligned}\)

02

Step 2: Magnitude

Find the magnitude of vector equation r’(t) that is

\(\begin{aligned}{l}\left| {r'(t)} \right| = \sqrt {16{t^2}{{({t^2} + 1)}^{ - 4}} + 16{t^4}{{({t^2} + 1)}^{ - 4}} + 4{{({t^2} + 1)}^{ - 3}}( - 4{t^2}) + 4{{({t^2} + 1)}^{ - 2}}} \\ = \sqrt {\frac{{16{t^2}}}{{{{({t^2} + 1)}^4}}} + \frac{{16{t^4}}}{{{{({t^2} + 1)}^4}}} - \frac{{16{t^2}}}{{{{({t^2} + 1)}^3}}} + \frac{4}{{{{({t^2} + 1)}^2}}}} \\ = \sqrt {\frac{{16{t^2} + 16{t^4} - 16{t^2}({t^2} + 1) + 4{{({t^2} + 1)}^2}}}{{{{({t^2} + 1)}^4}}}} \\ = \sqrt {\frac{4}{{{{({t^2} + 1)}^2}}}} \\ = \frac{2}{{({t^2} + 1)}}\end{aligned}\)

Find the magnitude of vector equation r’(t) that is

\(\begin{aligned}{l}\left| {r'(t)} \right| = \sqrt {16{t^2}{{({t^2} + 1)}^{ - 4}} + 16{t^4}{{({t^2} + 1)}^{ - 4}} + 4{{({t^2} + 1)}^{ - 3}}( - 4{t^2}) + 4{{({t^2} + 1)}^{ - 2}}} \\ = \sqrt {\frac{{16{t^2}}}{{{{({t^2} + 1)}^4}}} + \frac{{16{t^4}}}{{{{({t^2} + 1)}^4}}} - \frac{{16{t^2}}}{{{{({t^2} + 1)}^3}}} + \frac{4}{{{{({t^2} + 1)}^2}}}} \\ = \sqrt {\frac{{16{t^2} + 16{t^4} - 16{t^2}({t^2} + 1) + 4{{({t^2} + 1)}^2}}}{{{{({t^2} + 1)}^4}}}} \\ = \sqrt {\frac{4}{{{{({t^2} + 1)}^2}}}} \\ = \frac{2}{{({t^2} + 1)}}\end{aligned}\)

03

Step 3: The arclength

Next we have to find s, then solve for t, that is,

\(\begin{aligned}{l}s = \int\limits_0^t {\frac{2}{{{t^2} + 1}}dt} \\ = 2{\tan ^{ - 1}}(t)\end{aligned}\)

This implies we have

\(t = \tan \left( {\frac{s}{2}} \right)\).

Plug in for t. Using trigonometric identities, simplify

\(\begin{aligned}{l}r(t(s)) = \left\langle {\frac{2}{{{{\sec }^2}\left( {\frac{s}{2}} \right)}} - 1,\frac{{2\tan \left( {\frac{s}{2}} \right)}}{{{{\sec }^2}\left( {\frac{s}{2}} \right)}}} \right\rangle \\ = \left\langle {2{{\cos }^2}\left( {\frac{s}{2}} \right) - 1,2\sin \left( {\frac{s}{2}} \right)\cos \left( {\frac{s}{2}} \right)} \right\rangle \\ = \left\langle {\cos (s),\sin (s)} \right\rangle \end{aligned}\)

Thus we found that r(t(s)) is a unit circle : \(r(t(s)) = \left\langle {\cos (s),\sin (s)} \right\rangle \)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free