Its magnitude (intensity) is
\(\begin{aligned}{l}\left| {r'(t)} \right| = \sqrt {{{(2{e^{2t}}\cos 2t - 2{e^{2t}}\sin 2t)}^2} + {{(2{e^{2t}}\sin 2t + 2{e^{2t}}\cos 2t)}^2}} \\\left| {r'(t)} \right| = \sqrt {{{(2{e^{2t}})}^2}({{(\cos 2t - \sin 2t)}^2} + {{(\sin 2t + \cos 2t)}^2})} \\\left| {r'(t)} \right| = \sqrt {4{e^{4t}}({{\cos }^2}2t - 2\cos (2t)\sin (2t) + {{\sin }^2}(2t) + {{\sin }^2}(2t) + 2\sin (2t)\cos (2t) + {{\cos }^2}(2t))} \end{aligned}\)
\(\begin{aligned}{l}\left| {r'(t)} \right| = \sqrt {4{e^{4t}}(2{{\cos }^2}(2t) + 2{{\sin }^2}(2t))} \\\left| {r'(t)} \right| = 2\sqrt {2{e^{4t}}({{\cos }^2}2t + {{\sin }^2}2t)} \\\left| {r'(t)} \right| = 2{e^{2t}}\sqrt 2 \end{aligned}\)
Since \(\frac{{ds}}{{dt}} = \left| {r'(t)} \right|\) it follows that:
\(\begin{aligned}{l}\frac{{ds}}{{dt}} = 2{e^{2t}}\sqrt 2 = \int\limits_0^t {2\sqrt 2 {e^{2u}}du} \\ = 2\sqrt 2 \int\limits_0^t {{e^{2u}}du} = \left| {\begin{aligned}{*{20}{c}}{2u = x}\\{du = \frac{1}{2}dx}\\{0 \to 0}\\{t \to 2t}\end{aligned}} \right|\end{aligned}\)
\(\begin{aligned}{l} = 2\sqrt 2 \int\limits_0^{2t} {{e^x}\frac{1}{2}dx} \\ = \sqrt 2 \left. {{e^x}} \right|_0^{2t} = \sqrt 2 ({e^{2t}} - 1)\end{aligned}\)
Form here we have that,
\(\begin{aligned}{l}s = \sqrt 2 ({e^{2t}} - 1)\\\frac{s}{{\sqrt 2 }} + 1 = {e^{2t}}\\\ln \left( {\frac{s}{{\sqrt 2 }} + 1} \right) = \ln {e^{2t}} \Rightarrow t = \frac{1}{2}\ln \left( {\frac{s}{{\sqrt 2 }} + 1} \right)\end{aligned}\)