Chapter 13: Q7E (page 795)
Find (a) the curl and (b) the divergence of the vector field.
\({\rm{F}}(x,y,z) = \left( {{e^x}\sin y,{e^y}\sin z,{e^z}\sin x} \right)\)
Short Answer
(a) The\({\mathop{\rm curl}\nolimits} {\bf{F}}\) is \(\left\langle { - {e^y}\cos z, - {e^z}\cos x, - {e^x}\cos y} \right\rangle \)
(b) The divergence of the vector field is \({e^x}\sin y + {e^y}\sin z + {e^z}\sin x\).
Step by step solution
Concept of Divergence of the vector field
Divergenceis avector operatorthat operates on avector field, producing ascalar fieldgiving the quantity of the vector field's source at each point.
\(\begin{array}{l}{\mathop{\rm div}\nolimits} {\bf{F}} = \nabla \cdot {\bf{F}}\\{\mathop{\rm div}\nolimits} {\bf{F}} = \frac{{\partial {F_x}}}{{\partial x}} + \frac{{\partial {F_y}}}{{\partial y}} + \frac{{\partial {F_z}}}{{\partial z}}\end{array}\)
Calculation of the\({\mathop{\rm curl}\nolimits} {\bf{F}}\)
(a)
Consider the standard equation of a curl \({\bf{F}}\) for \({\rm{F}} = P{\rm{i}} + Q{\rm{j}} + R{\rm{k}}\)
\({\mathop{\rm curl}\nolimits} {\bf{F}} = \left| {\begin{array}{*{20}{c}}{\rm{i}}&{\rm{j}}&{\rm{k}}\\{\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\P&Q&R\end{array}} \right|\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(1)\)
We know that \({\rm{F}}(x,y,z) = \left\langle {{e^x}\sin y,{e^y}\sin z,{e^z}\sin x} \right\rangle \)
Substitute \({e^x}\sin y\) for \(P,{e^y}\sin z\) for \(Q\) and \({e^z}\sin x\) for \(R\) in equation \(\left( 1 \right),\)
\(\begin{array}{l}{\mathop{\rm curl}\nolimits} {\bf{F}} = \left| {\begin{array}{*{20}{c}}{\rm{i}}&{\rm{j}}&{\rm{k}}\\{\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\{{e^x}\sin y}&{{e^y}\sin z}&{{e^z}\sin x}\end{array}} \right|\\{\mathop{\rm curl}\nolimits} {\bf{F}} = \left\{ {\begin{array}{*{20}{c}}{\left[ {\frac{\partial }{{\partial y}}\left( {{e^z}\sin x} \right) - \frac{\partial }{{\partial z}}\left( {{e^y}\sin z} \right)} \right]{\rm{i}} - \left[ {\frac{\partial }{{\partial x}}\left( {{e^z}\sin x} \right) - \frac{\partial }{{\partial z}}\left( {{e^x}\sin y} \right)} \right]{\rm{j}} + }\\{\left[ {\frac{\partial }{{\partial x}}\left( {{e^y}\sin z} \right) - \frac{\partial }{{\partial y}}\left( {{e^x}\sin y} \right)} \right]{\rm{k}}}\end{array}} \right\}\\{\mathop{\rm curl}\nolimits} {\bf{F}} = \left\{ {\begin{array}{*{20}{c}}{\left[ {\left( {{e^z}\sin x} \right)\frac{\partial }{{\partial y}}(1) - \left( {{e^y}} \right)\frac{\partial }{{\partial z}}(\sin z)} \right]{\rm{i}} - \left[ {\left( {{e^z}} \right)\frac{\partial }{{\partial x}}(\sin x) - \left( {{e^x}\sin y} \right)\frac{\partial }{{\partial z}}(1)} \right]{\rm{j}} + }\\{\left[ {\left( {{e^y}\sin z} \right)\frac{\partial }{{\partial x}}(1) - \left( {{e^x}} \right)\frac{\partial }{{\partial y}}(\sin y)} \right]{\rm{k}}}\end{array}} \right\}\\{\mathop{\rm curl}\nolimits} {\bf{F}} = \left[ {0 - \left( {{e^y}\cos z} \right)} \right]{\rm{i}} - \left[ {\left( {{e^z}\cos x} \right) - 0} \right]{\rm{j}} + \left[ {0 - \left( {{e^x}\cos y} \right)} \right]{\rm{k}}\end{array}\)
Modify the equation.
\(\begin{array}{l}{\mathop{\rm curl}\nolimits} {\bf{F}} = - \left( {{e^y}\cos z} \right){\rm{i}} - \left( {{e^z}\cos x} \right){\rm{j}} - \left( {{e^x}\cos y} \right){\rm{k}}\\{\mathop{\rm curl}\nolimits} {\bf{F}} = \left\langle { - {e^y}\cos z, - {e^z}\cos x, - {e^x}\cos y} \right\rangle \end{array}\)
Thus, the\({\mathop{\rm curl}\nolimits} {\bf{F}}\) is \(\left\langle { - {e^y}\cos z, - {e^z}\cos x, - {e^x}\cos y} \right\rangle \)
Calculation for the divergence of the vector field
(b)
Consider the standard equation of a divergence of vector field for \({\rm{F}} = P{\rm{i}} + Q{\rm{j}} + R{\rm{k}}\) \({\mathop{\rm div}\nolimits} {\rm{F}} = \frac{{\partial P}}{{\partial x}} + \frac{{\partial Q}}{{\partial y}} + \frac{{\partial R}}{{\partial z}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(2)\)
Substitute \({e^x}\sin y\) for \(P,{e^y}\sin z\) for \(Q\) and \({e^z}\sin x\) for \(R\) in equation \(\left( 2 \right),\)
\(\begin{array}{l}{\mathop{\rm div}\nolimits} {\rm{F}} = \frac{\partial }{{\partial x}}\left( {{e^x}\sin y} \right) + \frac{\partial }{{\partial y}}\left( {{e^y}\sin z} \right) + \frac{\partial }{{\partial z}}\left( {{e^z}\sin x} \right)\\{\mathop{\rm div}\nolimits} {\rm{F}} = (\sin y)\frac{\partial }{{\partial x}}\left( {{e^x}} \right) + (\sin z)\frac{\partial }{{\partial y}}\left( {{e^y}} \right) + (\sin x)\frac{\partial }{{\partial z}}\left( {{e^z}} \right)\\{\mathop{\rm div}\nolimits} {\rm{F}} = (\sin y)\left( {{e^x}} \right) + (\sin z)\left( {{e^y}} \right) + (\sin x)\left( {{e^z}} \right)\\{\mathop{\rm div}\nolimits} {\rm{F}} = {e^x}\sin y + {e^y}\sin z + {e^z}\sin x\end{array}\)
Thus, the divergence of the vector field is \({e^x}\sin y + {e^y}\sin z + {e^z}\sin x\).
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!