Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

  1. Show the parametric equation\(x = a\sin u\cos v,y = b\sin u\sin v,z = c\cos u,0 \le u \le \pi ,0 \le v \le 2\pi \) represents an ellipsoid.
  2. Draw the graph of an ellipsoid with the parametric equations\(x = a\sin u\cos v,y = b\sin u\sin v,z = c\cos u,0 \le u \le \pi ,0 \le v \le 2\pi {\rm{ for }}a = 1,b = 2,{\rm{ and }}c = 3\)
  3. Find the expression for surface area of the ellipsoid with the parametric equations\(x = a\sin u\cos v,y = b\sin u\sin v,z = c\cos u,0 \le u \le \pi ,0 \le v \le 2\pi {\rm{ for }}a = 1,b = 2,{\rm{ and }}c = 3\)

Short Answer

Expert verified
  1. The parametric equations\(x = a\sin u\cos v,y = b\sin u\sin v,z = c\cos u,0 \le u \le \pi ,0 \le v \le 2\pi \) are represented an ellipsoid.
  2. The answer is given below
  3. The expression for surface area of the ellipsoid with the parametric equations\(x = a\sin u\cos v,y = b\sin u\sin v,z = c\cos u,0 \le u \le \pi ,0 \le v \le 2\pi {\rm{ for }}a = 1,b = 2{\rm{, and }}c = 3\)is\(A(S) = \int_0^{2\pi } {\int_0^\pi {\sqrt {36{{\sin }^4}u{{\cos }^2}v + 9{{\sin }^4}u{{\sin }^2}v + 4{{\sin }^2}u{{\cos }^2}u} } } dudv\).

Step by step solution

01

Expression for equation of ellipsoid

(a)

Write the expression for equation of ellipsoid:

\(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1\) …… (1)

02

Use the equation of ellipsoid for further calculation

Write the parametric equation as follows,

\(x = a\sin u\cos v,y = b\sin u\sin v,z = c\cos u,0 \le u \le \pi ,0 \le v \le 2\pi \)

Rewrite the parametric equation as follows,

\(\frac{x}{a} = \sin u\cos v,\frac{y}{b} = \sin u\sin v,\frac{z}{c} = \cos u\)

Take square and add the expression as follows,

\({\left( {\frac{x}{a}} \right)^2} + {\left( {\frac{y}{b}} \right)^2} + {\left( {\frac{z}{c}} \right)^2} = {(\sin u\cos v)^2} + {(\sin u\sin v)^2} + {(\cos u)^2}\)

Simplify the expression as follows,

\(\begin{align} & frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}+\frac{{{z}^{2}}}{{{c}^{2}}}={{\sin }^{2}}u{{\cos }^{2}}v+{{\sin }^{2}}u{{\sin }^{2}}v+{{\cos }^{2}}u \\ & ={{\sin }^{2}}u\left( {{\cos }^{2}}v+{{\sin }^{2}}v \right)+{{\cos }^{2}}u \\ & ={{\sin }^{2}}u(1)+{{\cos }^{2}}u\left( \because {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 \right) \\ & ={{\sin }^{2}}u+{{\cos }^{2}}u \\ \end{align}\)

Then,

\(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1\) …… (2)

As the equations (1) and (2) are similar, the parametric equation represents an ellipsoid.

Thus, the parametric equations\(x = a\sin u\cos v,y = b\sin u\sin v,z = c\cos u,0 \le u \le \pi ,0 \le v \le 2\pi \) are represented an ellipsoid.

03

Consider the values of scalar parameters in the parametric equations

(b)

Consider the values of scalar parameters in the parametric equations as follows,

\(a = 1,b = 2,{\rm{ and }}c = 3\)

Substitute \(1{\rm{ for }}a,2{\rm{ for }}b,{\rm{ and }}3{\rm{ for }}c\) in the parametric equations and rewrite the parametric equations of the ellipsoid as follows.

\(\begin{array}{l}x = (1)\sin u\cos v,y = (2)\sin u\sin v,z = (3)\cos u,0 \le u \le \pi ,0 \le v\\ \le 2\pi \\x = \sin u\cos v,y = 2\sin u\sin v,z = 3\cos u,0 \le u \le \pi ,0 \le v \le 2\pi \end{array}\) …… (3)

From the analysis in part (a) and equation (3), draw the graph of an ellipsoid with the parametric equations \(x = a\sin u\cos v,y = b\sin u\sin v,z = c\cos u,0 \le u \le \pi ,0 \le v \le 2\pi {\rm{ for }}a = 1,b = 2,{\rm{ and }}c = 3\) as shown in Figure 1.

Thus, the graph of an ellipsoid of the parametric equations \(x = a\sin u\cos v,y = b\sin u\sin v,z = c\cos u,0 \le u \le \pi ,0 \le v \le 2\pi {\rm{ for }}a = 1,b = 2,{\rm{ and }}c = 3\) is drawn.

04

Expression to find the surface area of the plane

(c)

Write the expression to find the surface area of the plane with vector equation\({\rm{r}}(u,v)\)

\(A(S)=\iint_{D}{\left| {{\text{r}}_{u}}\times {{\text{r}}_{v}} \right|}dA\) …… (4)

Here,

\({r_u}\)Is the derivative of vector equation\({\bf{r}}(u,v)\)with respect to the parameter\(u\)and

\({{\rm{r}}_v}\)Is the derivative vector equation\({\rm{r}}(u,v)\)with respect to the parameter\(v{\rm{. }}\)

Write the expression to find\({r_u}.\)

\({{\rm{I}}_u} = \frac{\partial }{{\partial u}}(\;{\rm{T}}(u,v))\) …… (5)

Write the expression to find\({{\rm{r}}_v}.\)

\({\Gamma _v} = \frac{d}{{{\partial _v}}}(\Gamma (u,v))\) ...... (6)

05

Use the equations (4), (5), and (6) for further calculation

Write the vector function \({\rm{r}}(u,v)\) for the parametric equations in equation (3),

\({\rm{r}}(u,v) = \langle \sin u\cos v,2\sin u\sin v,3\cos u\rangle ,0 \le u \le \pi ,0 \le v \le 2\pi \)

Calculation of\(ru\):

Substitute \(\langle \sin u\cos v,2\sin u\sin v,3\cos u\rangle {\rm{ for r}}(u,v)\) in equation (5),

\(\begin{array}{l}{{\rm{r}}_u} = \frac{\partial }{{\partial u}}\langle \sin u\cos v,2\sin u\sin v,3\cos u\rangle \\ = \left\langle {\frac{\partial }{{\partial u}}(\sin u\cos v),\frac{\partial }{{\partial u}}(2\sin u\sin v),\frac{\partial }{{\partial u}}(3\cos u)} \right\rangle \\ = \left\langle {\cos v\frac{\partial }{{\partial u}}(\sin u),2\sin v\frac{\partial }{{\partial u}}(\sin u),3\frac{\partial }{{\partial u}}(\cos u)} \right\rangle \\ = \langle \cos u\cos v,2\cos u\sin v, - 3\sin u\rangle \end{array}\)

Calculation of\(rv\):

Substitute \(\langle \sin u\cos v,2\sin u\sin v,3\cos u\rangle {\rm{ for r}}(u,v)\) in equation (6),

Calculation of\(ru \times rv\):

Substitute \(\langle \cos u\cos v,2\cos u\sin v, - 3\sin u\rangle {\rm{ for }}{{\rm{r}}_u}{\rm{ and }}\langle - \sin u\sin v,2\sin u\cos v,0\rangle {\rm{ for }}{{\rm{r}}_t}\) in the expression\(ru \times rv\),

\({{\rm{r}}_u} \times {{\rm{r}}_v} = \left\langle {\begin{array}{*{20}{l}}{\cos u\cos v,}\\{2\cos u\sin v, - 3\sin u}\end{array}} \right\rangle \times \left\langle {\begin{array}{*{20}{l}}{ - \sin u\sin v}\\{2\sin u\cos v,0}\end{array}} \right\rangle \)

Rewrite and compute the expression as follows,

\(\begin{array}{l}{{\rm{r}}_u} \times {{\rm{r}}_v} = \left| {\begin{array}{*{20}{c}}{\rm{i}}&{\rm{j}}&{\rm{k}}\\{\cos u\cos v}&{2\cos u\sin v}&{ - 3\sin u}\\{ - \sin u\sin v}&{2\sin u\cos v}&0\end{array}} \right|\\ = \left( {\begin{array}{*{20}{c}}{\left| {\begin{array}{*{20}{c}}{2\cos u\sin v}&{ - 3\sin u}\\{2\sin u\cos v}&0\end{array}} \right|{\rm{i}} - \left| {\begin{array}{*{20}{c}}{\cos u\cos v}&{ - 3\sin u}\\{ - \sin u\sin v}&0\end{array}} \right|{\rm{j}}}\\{ + \left| {\begin{array}{*{20}{c}}{\cos u\cos v}&{2\cos u\sin v}\\{ - \sin u\sin v}&{2\sin u\cos v}\end{array}} \right|{\rm{k}}}\end{array}} \right)\\ = \left\{ {\begin{array}{*{20}{l}}{\left( {0 - \left( {6{{\sin }^2}u\cos v} \right)} \right){\rm{i}} - \left( {0 - 3{{\sin }^2}u\sin v} \right){\rm{j}}}\\{ + \left( {2\sin u\cos u\cos 2v - \left( { - 2\sin u\cos u{{\sin }^2}v} \right)} \right){\rm{k}}}\end{array}} \right\}\\ = - 6{\sin ^2}u\cos v{\rm{i}} + 3{\sin ^2}u\sin v{\rm{j}} + 2\sin u\cos u\left( {{{\cos }^2}v + {{\sin }^2}v} \right){\rm{k}}\end{array}\)

Simplify the expression as follows,

\({{\rm{r}}_u} \times {{\rm{r}}_v} = \left\langle { - 6{{\sin }^2}u\cos v,3{{\sin }^2}u\sin v,2\sin u\cos u} \right\rangle \)

Substitute\(\left\langle { - 6{{\sin }^2}u\cos v,3{{\sin }^2}u\sin v,2\sin u\cos u} \right\rangle {\rm{ for }}{{\rm{r}}_u} \times {{\rm{r}}_v}\) in equation (4),

Apply the limits\(u,v\) and rewrite the expression as follows,

\(A(S) = \int_0^{2\pi } {\int_0^\pi {\sqrt {36{{\sin }^4}u{{\cos }^2}v + 9{{\sin }^4}u{{\sin }^2}v + 4{{\sin }^2}u{{\cos }^2}u} } } dudv\)

Thus, the expression for surface area of the ellipsoid with the parametric equations\(x = a\sin u\cos v,y = b\sin u\sin v,z = c\cos u,0 \le u \le \pi ,0 \le v \le 2\pi {\rm{ for }}a = 1,b = 2{\rm{, and }}c = 3\)is\(A(S) = \int_0^{2\pi } {\int_0^\pi {\sqrt {36{{\sin }^4}u{{\cos }^2}v + 9{{\sin }^4}u{{\sin }^2}v + 4{{\sin }^2}u{{\cos }^2}u} } } dudv\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free