Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

To determine

(a)To find the\({\mathop{\rm curl}\nolimits} {\bf{F}}\).

(b) To find the divergence of the vector field.

Short Answer

Expert verified

(a) The\({\mathop{\rm curl}\nolimits} {\bf{F}}\)is\(x(\cos xy - \cos zx){\rm{i}} + y(\cos yz - \cos xy){\rm{j}} - z(\cos zx - \cos yz){\rm{k}}\).

(b) The divergence of the vector field is\(0\).

Step by step solution

01

Concept of Divergence of the vector field

Divergenceis avector operatorthat operates on avector field, producing ascalar fieldgiving the quantity of the vector field's source at each point.

\(\begin{array}{l}{\mathop{\rm div}\nolimits} {\bf{F}} = \nabla \cdot {\bf{F}}\\{\mathop{\rm div}\nolimits} {\bf{F}} = \frac{{\partial {F_x}}}{{\partial x}} + \frac{{\partial {F_y}}}{{\partial y}} + \frac{{\partial {F_z}}}{{\partial z}}\end{array}\)

02

Calculation of the\({\mathop{\rm curl}\nolimits} {\bf{F}}\)

(a)

Consider the standard equation of a curl \({\bf{F}}\) for \({\rm{F}} = P{\rm{i}} + Q{\rm{j}} + R{\rm{k}}\)

\({\mathop{\rm curl}\nolimits} {\bf{F}} = \left| {\begin{array}{*{20}{c}}{\rm{i}}&{\rm{j}}&{\rm{k}}\\{\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\P&Q&R\end{array}} \right|\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(1)\)

We know that\({\rm{F}}(x,y,z) = \sin yz{\rm{i}} + \sin zx{\rm{j}} + \sin xy{\rm{k}}\)

Now substitute \(\sin yz\) for \(P,\sin zx\) for \(Q\) and \(\sin xy\) for \(R\) in equation \(\left( 1 \right),\)

\(\begin{array}{l}{\mathop{\rm curl}\nolimits} {\bf{F}} = \left| {\begin{array}{*{20}{c}}{\rm{i}}&{\rm{j}}&{\rm{k}}\\{\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\{\sin yz}&{\sin zx}&{\sin xy}\end{array}} \right|\\{\mathop{\rm curl}\nolimits} {\bf{F}} = \left\{ {\begin{array}{*{20}{c}}{\left( {\frac{\partial }{{\partial y}}(\sin xy) - \frac{\partial }{{\partial z}}(\sin zx)} \right){\rm{i}} - \left( {\frac{\partial }{{\partial z}}(\sin yz) - \frac{\partial }{{\partial x}}(\sin xy)} \right){\rm{j}} + \left( {\frac{\partial }{{\partial x}}(\sin zx) - \frac{\partial }{{\partial y}}(\sin yz)} \right){\rm{k}}}\\{}\end{array}} \right\}\\{\mathop{\rm curl}\nolimits} {\bf{F}} = \left\{ {\begin{array}{*{20}{c}}{\left( {(x)\frac{\partial }{{\partial y}}(\sin xy) - (x)\frac{\partial }{{\partial z}}(\sin zx)} \right){\rm{i}} - \left( {(y)\frac{\partial }{{\partial z}}(\sin yz) - (y)\frac{\partial }{{\partial x}}(\sin xy)} \right){\rm{j}} + \left( {(z)\frac{\partial }{{\partial x}}(\sin zx) - (z)\frac{\partial }{{\partial y}}(\sin yz)} \right){\rm{k}}}\\{}\end{array}} \right\}\\{\mathop{\rm curl}\nolimits} {\bf{F}} = \left\{ {\begin{array}{*{20}{c}}{((x)(\cos xy) - (x)(\cos zx)){\rm{i}} - ((y)(\cos yz) - (y)(\cos xy)){\rm{j}} + ((z)(\cos zx) - (z)(\cos yz)){\rm{k}}}\\{}\end{array}} \right\}\end{array}\)

On further simplification

\({\mathop{\rm curl}\nolimits} {\bf{F}} = x(\cos xy - \cos zx){\rm{i}} - y(\cos yz - \cos xy){\rm{j}} + z(\cos zx - \cos yz){\rm{k}}\)

Thus, the \({\mathop{\rm curl}\nolimits} {\bf{F}}\) is \(x(\cos xy - \cos zx){\rm{i}} + y(\cos yz - \cos xy){\rm{j}} - z(\cos zx - \cos yz){\rm{k}}\).

03

Calculation for the divergence of the vector field

(b)

Consider the standard equation of a divergence of vector field for \({\rm{F}} = P{\rm{i}} + Q{\rm{j}} + R{\rm{k}}\) \({\mathop{\rm div}\nolimits} {\rm{F}} = \frac{{\partial P}}{{\partial x}} + \frac{{\partial Q}}{{\partial y}} + \frac{{\partial R}}{{\partial z}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(2)\)

Substitute \(\sin yz\) for \(P,\sin zx\) for \(Q\) and \(\sin xy\) for \(R\) in equation \(\left( 2 \right),\)

\(\begin{array}{l}{\mathop{\rm div}\nolimits} {\rm{F}} = \frac{\partial }{{\partial x}}(\sin yz) + \frac{\partial }{{\partial y}}(\sin zx) + \frac{\partial }{{\partial z}}(\sin xy)\\{\mathop{\rm div}\nolimits} {\rm{F}} = (\sin yz)\frac{\partial }{{\partial x}}(1) + (\sin zx)\frac{\partial }{{\partial y}}(1) + (\sin xy)\frac{\partial }{{\partial z}}(1)\\{\mathop{\rm div}\nolimits} {\rm{F}} = (\sin yz)(0) + (\sin zx)(0) + (\sin xy)(0)\\{\mathop{\rm div}\nolimits} {\rm{F}} = 0 + 0 + 0\\{\mathop{\rm div}\nolimits} {\rm{F}} = 0\end{array}\)

Thus, the divergence of the vector field is\(0\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free