Chapter 13: Q4E (page 816)
Find the value of\(\iint_{S}{f}(x,y,z)dS \).
Short Answer
The value of \(\iint_{S}{f}(x,y,z)dS \)is\( - 80\pi \).
Chapter 13: Q4E (page 816)
Find the value of\(\iint_{S}{f}(x,y,z)dS \).
The value of \(\iint_{S}{f}(x,y,z)dS \)is\( - 80\pi \).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the value of\(\iint_S ydS\)
Find the value of\(\iint_S {{y^2}}{z^2}dS\)
Evaluate the line integral, where C is the given curve.
\(\) \(\int_{\rm{C}} {\rm{x}} {{\rm{y}}^{\rm{4}}}{\rm{ds}}\), C is the right half of the circle \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ = 16}}\).
\({\bf{F}}(x,y,z) = 3x{y^2}{\bf{i}} + x{e^z}{\bf{j}} + {z^3}{\bf{k}}\), \(S\) is the surface of the solid bounded by the cylinder \({y^2} + {z^2} = 1\) and the planes \(x = - 1\)and \(x = 2\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.