Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: To show: The flux of F across a sphere\(S\)with center the origin is independent of the radius of\(S\).

Short Answer

Expert verified

The flux is \(4\pi c\) and hence independent of \(R\)

Step by step solution

01

Concept of Flux and Formula Used.

Any impact that appears to pass or travel through a surface or substance is referred to as flux. Flux is a concept found in applied mathematics and vector calculus that has numerous physics applications.

Given:

The inverse square field is given by \({\rm{F}}({\rm{r}}) = \frac{{c{\rm{r}}}}{{|{\rm{r}}{|^3}}}.......(1)\)

The radius is given by \({\rm{r}} = x{\rm{i}} + y{\rm{j}} + z{\rm{k}}\)

Formula used:

02

Calculate the Flux.

The parameterisation for the sphere is

\({\bf{r}}(\theta ,\phi ) = R\sin \phi \cos \theta {\bf{i}} + R\sin \phi \sin \theta {\bf{j}} + R\cos \phi {\bf{k}}\)

Where \(\theta \in (0,2\pi )\) and \(f \in (0,\pi )\)

\(\begin{array}{l}{{\bf{r}}_\theta } = - R\sin f\sin \theta {\bf{i}} + R\sin f\cos \theta {\bf{j}}\\{{\bf{r}}_f} = R\cos f\cos \theta {\bf{i}} + R\cos f\sin \theta {\bf{j}} - R\sin f{\bf{k}}\\{{\bf{r}}_\theta } \times {{\bf{r}}_f} = \left| {\begin{array}{*{20}{c}}{\bf{i}}&{\bf{j}}&{\bf{k}}\\{ - R\sin f\sin \theta }&{R\sin f\cos \theta }&0\\{R\cos f\cos \theta }&{R\cos f\sin \theta }&{ - R\sin f}\end{array}} \right|\\{{\bf{r}}_\theta } \times {{\bf{r}}_f} = {\bf{i}}\left| {\begin{array}{*{20}{c}}{R\sin f\cos \theta }&0\\{R\cos f\sin \theta }&{ - R\sin f}\end{array}} \right| - {\bf{j}}\left| {\begin{array}{*{20}{c}}{ - R\sin f\sin \theta }&0\\{R\cos f\cos \theta }&{ - R\sin f}\end{array}} \right| + {\bf{k}}\left| {\begin{array}{*{20}{c}}{ - R\sin f\sin \theta }&{R\sin f\cos \theta }\\{R\cos f\cos \theta }&{R\cos f\sin \theta }\end{array}} \right|\\{{\bf{r}}_\theta } \times {{\bf{r}}_f} = - {R^2}{\sin ^2}f\cos \theta {\bf{i}} - {R^2}{\sin ^2}f\sin \theta {\bf{j}} - {R^2}\sin f\cos f{\bf{k}}\end{array}\)

Note that\({{\bf{r}}_\theta } \times {{\bf{r}}_f}\)is pointing towards the origin, therefore

\(\begin{array}{l}d{\bf{S}} = - \left( {{{\bf{r}}_\theta } \times {{\bf{r}}_f}} \right)dA\\ = \left( {{R^2}{{\sin }^2}f\cos \theta {\bf{i}} + {R^2}{{\sin }^2}f\sin \theta {\bf{j}} + {R^2}\sin f\cos f{\bf{k}}} \right)dAd{\bf{S}}\\ = R\sin f(R\sin f\cos \theta {\bf{i}} + R\sin f\sin \theta {\bf{j}} + R\cos f{\bf{k}})dAd{\bf{S}}\\ = (R\sin f){\bf{r}}dA\end{array}\)

The inverse square field is given by\[{\rm{F}}({\rm{r}}) = \frac{{c{\rm{r}}}}{{|{\rm{r}}{|^3}}}........(1)\]

The radius is given by\[{\rm{r}} = x{\rm{i}} + y{\rm{j}} + z{\rm{k}}\]

Therefore,

The flux is \(4\pi c\) and hence independent of \(R\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free