Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: To find: The rate of flow outward through the hemisphere \({x^2} + {y^2} + {z^2} = 9,z \ge 0\).

Short Answer

Expert verified

The rate of flow outward through the hemisphere \({x^2} + {y^2} + {z^2} = 9,z \ge 0\) is \(0\frac{{{\rm{kg}}}}{{\rm{m}}}\).

Step by step solution

01

Concept of Surface Integral and Formula Used.

A surface integral is a surface integration generalisation of multiple integrals. It can be thought of as the line integral's double integral equivalent. It is possible to integrate a scalar field or a vector field over a surface.

Given:

Density is\(1025\frac{{{\rm{kg}}}}{{{m^3}}},{\rm{v}} = y{\rm{i}} + x{\rm{j}}\frac{m}{s}\)and hemisphere with\({x^2} + {y^2} + {z^2} = 9,z \ge 0\).

Formula used:

02

Calculate the Surface Integral.

By using the spherical coordinates to parameterize the hemisphere, consider \({\rm{r}}(f,\theta ) = 3\sin f\cos \theta {\rm{i}} + 3\sin f\sin \theta {\rm{j}} + 3\cos f{\rm{k}}\) with limits are \(0 \le \theta \le 2\pi \) and \(0 \le f \le \frac{\pi }{2}.\)

Find\({r_f}\).

Substitute\(3\sin f\cos \theta \)for\(x,3\sin f\sin \theta \)for\(y\)and\(3\cos f\)for\(z\),in equation (2),

\(\begin{array}{l}{{\rm{r}}_\phi } = \frac{\partial }{{\partial \phi }}(3\sin \phi \cos \theta ){\rm{i}} + \frac{\partial }{{\partial \phi }}(3\sin \phi \sin \theta ){\rm{j}} + \frac{\partial }{{\partial \phi }}(3\cos \phi ){\rm{k}}\\ = (3\cos \theta )\frac{\partial }{{\partial \phi }}(\sin \phi ){\rm{i}} + (3\sin \theta )\frac{\partial }{{\partial \phi }}(\sin \phi ){\rm{j}} + (3)\frac{\partial }{{\partial \phi }}(\cos \phi ){\rm{k}}\\ = 3\cos \theta \cos \phi {\rm{i}} + 3\sin \theta \cos \phi {\rm{j}} - 3\sin \phi {\rm{k}}\end{array}\)

Find\({{\bf{r}}_\theta }\).

Substitute\(3\sin f\cos \theta \)for\(x,3\sin f\sin \theta \)for\(y\)and\(3\cos f\)for\(z\),

in equation (3),

\(\begin{array}{l}{{\rm{r}}_\theta } = \frac{\partial }{{\partial \theta }}(3\sin \phi \cos \theta ){\rm{i}} + \frac{\partial }{{\partial \theta }}(3\sin \phi \sin \theta ){\rm{j}} + \frac{\partial }{{\partial \theta }}(3\cos \phi ){\rm{k}}\\ = (3\sin \phi )\frac{\partial }{{\partial \theta }}(\cos \theta ){\rm{i}} + (3\sin \phi )\frac{\partial }{{\partial \theta }}(\sin \theta ){\rm{j}} + (3\cos \phi )\frac{\partial }{{\partial \theta }}(1){\rm{k}}\\ = (3\sin \phi )( - \sin \theta ){\rm{i}} + (3\sin \phi )(\cos \theta ){\rm{j}} + (3\cos \phi )(0){\rm{k}}\\ = - 3\sin \phi \sin \theta {\rm{i}} + 3\sin \phi \cos \theta {\rm{j}}\end{array}\)

Find \({{\rm{r}}_f} \times {{\rm{r}}_\theta }\)

03

Calculate the rate of flow outward through the hemisphere .

Apply limits and substitute \(y{\rm{i}} + x{\rm{j}}\) for \(v,9{\sin ^2}f\cos \theta {\rm{i}} + 9{\sin ^2}f\sin \theta {\rm{j}} + 9\cos f\sin f{\rm{k}}\) for \({{\rm{r}}_f} \times {{\rm{r}}_\theta }\),

Substitute \(3\sin f\cos \theta \) for \(x,3\sin f\sin \theta \) for \(y\) and \(3\cos f\) for \(z\),

Simplify the equation.

Modify the equation.

Thus, the rate of flow outward through the hemisphere \({x^2} + {y^2} + {z^2} = 9,z \ge 0\) is \(0\frac{{{\rm{kg}}}}{{\rm{m}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free