Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The force exerted by an electric charge at the origin on a charged particle at a point \(\left( \text{x,y,z} \right)\]with a position vector\[\text{r=}\langle \text{x,y,z}\rangle \] is\[\text{F}\left( \text{r} \right)\text{=}{}^{\text{Kr}}/{}_{{{\left| \text{r} \right|}^{\text{3}}}}\] where is a constant. (See Example\[\text{5}\] in Section\[\text{13}\text{.1}\]) Find the work done as the particle moves along a straight line from\[\text{(2,0,0)to(2,1,5)}\).

Short Answer

Expert verified

The work done is\({\rm{K}}\left( {\frac{{\rm{1}}}{{\rm{2}}}{\rm{ - }}\frac{{\rm{1}}}{{\sqrt {{\rm{30}}} }}} \right)\).

Step by step solution

01

Given.

As a result, the parametric representation of the line segment between \({\rm{(2,0,0)}}\)and \({\rm{(2,1,5)}}\)is \({\rm{r(t) = (1 - t)}} \cdot \langle {\rm{2,0,0}}\rangle {\rm{ + t}} \cdot \langle {\rm{2,1,5}}\rangle \;\)where \({\rm{t}} \in {\rm{(0,1)r(t) = }}\langle {\rm{2(1 - t),0,0}}\rangle {\rm{ + }}\langle {\rm{2t,t,5t}}\rangle \)where \({\rm{t}} \in {\rm{(0,1)r(t) = }}\langle {\rm{2,t,5t}}\rangle \;\;\)Where \({\rm{t}} \in {\rm{(0,1)}}\)

Given:

\(\begin{aligned}&{\rm{F(x,y,z) = }}\frac{{{\rm{Kr}}}}{{{\rm{|r}}{{\rm{|}}^{\rm{3}}}}}\\&{\rm{ = }}\frac{{\rm{K}}}{{{{\left( {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{\rm{2}}}} \right)}^{{\rm{3/2}}}}}}\langle {\rm{x,y,z}}\rangle \end{aligned}\)

Therefore,

\({\rm{F(r(t)) = }}\frac{{\rm{K}}}{{{{\left( {{{\rm{2}}^{\rm{2}}}{\rm{ + }}{{\rm{t}}^{\rm{2}}}{\rm{ + (5t}}{{\rm{)}}^{\rm{2}}}} \right)}^{{\rm{3/2}}}}}}\langle {\rm{2,t,5t}}\rangle \)

\({\rm{F(r(t)) = }}\frac{{\rm{K}}}{{{{\left( {{\rm{4 + 26}}{{\rm{t}}^2}} \right)}^{{\rm{3/2}}}}}}\langle {\rm{2,t,5t}}\rangle \)

02

To find work done.

Note \({\rm{dr = }}\langle {\rm{0,1,5}}\rangle {\rm{dt}}\)

Work done \({\rm{ = }}\int_{\rm{C}} {\rm{F}} \cdot {\rm{dr}}\)

Integrate from \({\rm{0}}\)to\({\rm{1}}\), because \({\rm{t}} \in {\rm{(0,1)}}\)is true.

\(\begin{aligned}\int_0^1 {\frac{{\rm{K}}}{{{{\left( {{\rm{4 + 26}}{{\rm{t}}^{\rm{2}}}} \right)}^{{\rm{3/2}}}}}}} \langle {\rm{2,t,5t}}\rangle \cdot \langle {\rm{0,1,5}}\rangle {\rm{dt = }}\int_{\rm{0}}^{\rm{1}} {\frac{{{\rm{K(t + 25t)}}}}{{{{\left( {{\rm{4 + 26}}{{\rm{t}}^{\rm{2}}}} \right)}^{{\rm{3/2}}}}}}} {\rm{dt}}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\int_{\rm{0}}^{\rm{1}} {\frac{{{\rm{K(52t)}}}}{{{{\left( {{\rm{4 + 26}}{{\rm{t}}^{\rm{2}}}} \right)}^{{\rm{3/2}}}}}}} {\rm{dt}}\end{aligned}\)

Substitute \({\rm{4 + 26}}{{\rm{t}}^{\rm{2}}}{\rm{ = u and 52tdt = du}}\)

Integration's bounds shift over time \(\int_0^1 {{\rm{ to }}} \mathop \smallint \nolimits_4^{30} \)

\(\begin{array}{c}{\rm{ = }}\frac{{\rm{K}}}{{\rm{2}}}\int_{\rm{4}}^{{\rm{30}}} {\frac{{{\rm{du}}}}{{{{\rm{u}}^{{\rm{3/2}}}}}}} \\{\rm{ = }}\frac{{\rm{K}}}{{\rm{2}}} \cdot \left( {{\rm{ - }}\frac{{\rm{2}}}{{{{\rm{u}}^{{\rm{1/2}}}}}}} \right)_{\rm{4}}^{{\rm{30}}}\\{\rm{ = K}}\left( {\frac{{\rm{1}}}{{\rm{2}}}{\rm{ - }}\frac{{\rm{1}}}{{\sqrt {{\rm{30}}} }}} \right)\end{array}\)

Therefore, the work done is\({\rm{K}}\left( {\frac{{\rm{1}}}{{\rm{2}}}{\rm{ - }}\frac{{\rm{1}}}{{\sqrt {{\rm{30}}} }}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free