Chapter 13: Q3E (page 816)
Find the value of\(\iint_{H}{f}(x,y,z)dS \)..
Short Answer
The value of \(\iint_{H}{f}(x,y,z)dS \) is 2827.
Chapter 13: Q3E (page 816)
Find the value of\(\iint_{H}{f}(x,y,z)dS \)..
The value of \(\iint_{H}{f}(x,y,z)dS \) is 2827.
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether of not \({\bf{F}}\) is a conservative vector field. If it is, find a function \(f\) such that\({\bf{F}} - \nabla f\).
\({\bf{F}}(x,y) - (xy\cosh xy + \sinh xy){\bf{i}} + \left( {{x^2}\cosh xy} \right){\bf{j}}\)
Evaluate the line integral\(\int_{\rm{C}} {\rm{F}} {\rm{ \times dr}}\) where \({\rm{C}}\)is given by the vector function\({\rm{r(t)}}\).
\(\begin{array}{c}{\rm{F(x,y,z) = (x + y)i + (y - z)j + }}{{\rm{z}}^{\rm{2}}}{\rm{k,}}\\{\rm{r(t) = }}{{\rm{t}}^{\rm{2}}}{\rm{i + }}{{\rm{t}}^{\rm{3}}}{\rm{j + }}{{\rm{t}}^{\rm{2}}}{\rm{k,}}\;\;\;{\rm{0}} \le {\rm{t}} \le {\rm{1}}\end{array}\)
Use a calculator or CAS to evaluate the line integral correct to four decimal places.
\(\int_{\rm{c}} {{\rm{z}}{{\rm{e}}^{{\rm{ - xy}}}}} {\rm{ds}}\), where \({\rm{C}}\)has parametric equations,
\(\begin{array}{c}{\rm{x = t}}\\{\rm{y = }}{{\rm{t}}^{\rm{2}}}\\{\rm{z = }}{{\rm{e}}^{{\rm{ - t}}}}\end{array}\)
\({\rm{0}} \le {\rm{t}} \le 1\)
Evaluate the line integral, where C is the given curve.
\(\) \(\int_{\rm{C}} {\rm{x}} {\rm{ sin y ds}}\), C is the line segment from \({\rm{(0,}}\mid {\rm{3) to (4,6)}}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.