Let
\({\rm{a = }}{{\rm{a}}_{\rm{1}}}{\rm{i + }}{{\rm{a}}_{\rm{2}}}{\rm{j + }}{{\rm{a}}_{\rm{3}}}{\rm{k}}\)
Where \({{\rm{a}}_{\rm{1}}}{\rm{,}}{{\rm{a}}_{\rm{2}}}\) and \({{\rm{a}}_{\rm{3}}}\)are constants.
Known \({\rm{F = a * r}}\)
It is necessary to prove this.
\(\int_{C}{F}\cdot dr=\iint_{S}{2}a\cdot dS\)
Can write using Stoke's theorem
\(\int_{C}{F}\cdot dr=\iint_{S}{curl}F\cdot dS\)
It is sufficient to prove that \({\rm{curlF = 2a}}\).To prove the provided item.
\(\begin{array}{l}{\rm{F = a * r = }}\left( {{{\rm{a}}_{\rm{1}}}{\rm{i + }}{{\rm{a}}_{\rm{2}}}{\rm{j + }}{{\rm{a}}_{\rm{3}}}{\rm{k}}} \right){\rm{ * (xi + yj + zk)}}\\{\rm{F = }}\left| {\begin{array}{*{20}{c}}{\rm{i}}&{\rm{j}}&{\rm{k}}\\{{{\rm{a}}_{\rm{1}}}}&{{{\rm{a}}_{\rm{2}}}}&{{{\rm{a}}_{\rm{3}}}}\\{\rm{x}}&{\rm{y}}&{\rm{z}}\end{array}} \right|\\{\rm{F = i}}\left| {\begin{array}{*{20}{c}}{{{\rm{a}}_{\rm{2}}}}&{{{\rm{a}}_{\rm{3}}}}\\{\rm{y}}&{\rm{z}}\end{array}} \right|{\rm{ - j}}\left| {\begin{array}{*{20}{c}}{{{\rm{a}}_{\rm{1}}}}&{{{\rm{a}}_{\rm{3}}}}\\{\rm{x}}&{\rm{z}}\end{array}} \right|{\rm{ + k}}\left| {\begin{array}{*{20}{c}}{{{\rm{a}}_{\rm{1}}}}&{{{\rm{a}}_{\rm{2}}}}\\{\rm{x}}&{\rm{y}}\end{array}} \right|\\{\rm{F = }}\left( {{{\rm{a}}_{\rm{2}}}{\rm{z - }}{{\rm{a}}_{\rm{3}}}{\rm{y}}} \right){\rm{i + }}\left( {{{\rm{a}}_{\rm{3}}}{\rm{x - }}{{\rm{a}}_{\rm{1}}}{\rm{z}}} \right){\rm{j + }}\left( {{{\rm{a}}_{\rm{1}}}{\rm{y - }}{{\rm{a}}_{\rm{2}}}{\rm{x}}} \right){\rm{k}}\end{array}\)