Remember that,
The parametric representation of a line segment joining the points\({\rm{(a, b, c)}}\)and \({\rm{(l, m, n)}}\)is \({\rm{r(t) = (1 - t)}} \cdot \left\langle {{\rm{a,b,c}}} \right\rangle {\rm{ + t}} \cdot \left\langle {{\rm{l,m,n}}} \right\rangle \;\;\;{\rm{Where t}} \in {\rm{(0,1)}}\).
Therefore, the parametric representation of the line segment joining the points\({\rm{(0,0,1) }}\)and\(\left( {{\rm{2,1,0}}} \right)\) is.
\(\begin{array}{l}{\rm{r(t) = (1 - t)}} \cdot \langle {\rm{0,0,1}}\rangle {\rm{ + t}} \cdot \langle {\rm{2,1,0}}\rangle \;\;{\rm{Where t}} \in \left( {{\rm{0,1}}} \right)\\{\rm{r(t) = }}\langle {\rm{0,0,(1 - t)}}\rangle + \langle 2t,t,0\rangle \;\;\;{\rm{ Where t}} \in {\rm{(0,1)}}\\{\rm{r(t)}} = \langle {\rm{2t,t,(1 - t)}}\rangle \;\;\;{\rm{ Where }}t \in {\rm{(0,1)}}\end{array}\)
Given that
\({\rm{F(x,y,z) = x - }}{{\rm{y}}^{\rm{2}}}{\rm{,y - }}{{\rm{z}}^{\rm{2}}}{\rm{,z - }}{{\rm{x}}^{\rm{2}}}\)
Therefore,
\(\begin{array}{l}{\rm{F(r(t)) = (2t) - }}{{\rm{t}}^{\rm{2}}}{\rm{,t - (1 - t}}{{\rm{)}}^{\rm{2}}}{\rm{,(1 - t) - (2t}}{{\rm{)}}^{\rm{2}}}\\{\rm{F(r(t)) = 2t - }}{{\rm{t}}^{\rm{2}}}{\rm{,t - }}\left( {{{\rm{t}}^{\rm{2}}}{\rm{ - 2t + 1}}} \right){\rm{,(1 - t) - 4}}{{\rm{t}}^{\rm{2}}}\\{\rm{F(r(t)) = 2t - }}{{\rm{t}}^{\rm{2}}}{\rm{,}}\;{\rm{ - }}{{\rm{t}}^{\rm{2}}}{\rm{ + 3t - 1,1 - t - 4}}{{\rm{t}}^{\rm{2}}}\end{array}\)