\(\begin{aligned}\int_{\rm{C}} {\rm{F}} \cdot {\rm{dr = }}\int_{\rm{C}} {\frac{{{\rm{2}}{{\rm{x}}^{\rm{3}}}{\rm{ + 2x}}{{\rm{y}}^{\rm{2}}}{\rm{ - 2y}}}}{{{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}}}} {\rm{dx + }}\frac{{{\rm{2}}{{\rm{y}}^{\rm{3}}}{\rm{ + 2}}{{\rm{x}}^{\rm{2}}}{\rm{y + 2x}}}}{{{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}}}{\rm{dy}}\\\int_{\rm{C}} {\left( {{\rm{2x - }}\frac{{{\rm{2y}}}}{{{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}}}} \right)} {\rm{dx + }}\left( {{\rm{2y + }}\frac{{{\rm{2x}}}}{{{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}}}} \right){\rm{dy}}\end{aligned}\)
Because the partial derivatives\(\frac{{\partial P}}{{\partial y}}\)and\(\frac{{\partial Q}}{{\partial x}}\)do not exist at the origin, Green's theorem cannot be applied to a closed-loop enclosing the origin.
Re-write this
\(\int_{\rm{C}} {\rm{2}} {\rm{xdx + 2ydy + }}\int_{\rm{C}} {\frac{{{\rm{ - 2ydx + 2xdy}}}}{{{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}}}} {\rm{ = }}{{\rm{I}}_{\rm{1}}}{\rm{ + }}{{\rm{I}}_{\rm{2}}}\)
\({I_{\rm{1}}}{\rm{ = }}\int_{\rm{C}} {{\rm{2xdx + 2ydy}}} \)
When measured in polar coordinates,
\(\begin{aligned}\rm x &= rcos\theta \\ \Rightarrow \rm dx &= \frac{{\partial {\rm{x}}}}{{\partial {\rm{r}}}}{\rm{dr + }}\frac{{\partial {\rm{x}}}}{{\partial {\rm{\theta }}}}{\rm{d\theta }}\\\rm &= cos\theta dr - rsin\theta d\theta \end{aligned}\)
And
\(\begin{aligned}\rm y &= rsin\theta \\ \Rightarrow \rm dy &= \frac{{\partial y}}{{\partial r}}dr{\rm{ + }}\frac{{\partial y}}{{\partial \theta }}d\theta \\\rm &= sin\theta dr + rcos\theta d\theta \end{aligned}\)
\({{\rm{I}}_{\rm{1}}}{\rm{ = }}\int_{\rm{C}} {\rm{2}} {\rm{rcos\theta (cos\theta dr - rsin\theta d\theta ) + 2rsin\theta (sin\theta dr + rcos\theta d\theta )}}\)
Rearrange the items as follows:
\(\begin{aligned}{{\rm{I}}_{\rm{1}}}\rm &= \int_{\rm{C}} {\left( {{\rm{2rco}}{{\rm{s}}^{\rm{2}}}{\rm{\theta + 2rsi}}{{\rm{n}}^{\rm{2}}}{\rm{\theta }}} \right)} {\rm{dr + }}\left( {{\rm{ - 2}}{{\rm{r}}^{\rm{2}}}{\rm{cos\theta sin\theta + 2}}{{\rm{r}}^{\rm{2}}}{\rm{sin\theta cos\theta }}} \right){\rm{d\theta }}\\{{\rm{I}}_{\rm{1}}}\rm &= \int_{\rm{C}} {{\rm{(2r)}}} {\rm{dr + (0)d\theta }}\end{aligned}\)
\({{\rm{I}}_{\rm{1}}}{\rm{ = 2}}\int_{\rm{C}} {\rm{r}} {\rm{dr}}\)