Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the work done by the force field \({\rm{F}}\left( {{\rm{x,y}}} \right){\rm{ = }}{{\rm{x}}^{\rm{2}}}{\rm{i + y}}{{\rm{e}}^{\rm{x}}}{\rm{j}}\) on a particle that moves along the parabola \({\rm{x = }}{{\rm{y}}^{\rm{2}}}{\rm{ + 1}}\)from \(\left( {{\rm{1,0}}} \right)\)to \(\left( {{\rm{2,1}}} \right)\)

Short Answer

Expert verified

The work done by the force field is \({\rm{ = }}\frac{{\rm{7}}}{{\rm{3}}}{\rm{ + }}\frac{{{{\rm{e}}^{\rm{2}}}{\rm{ - e}}}}{{\rm{2}}}\).

Step by step solution

01

Find the work along the path.

Work done along a path is the line Integral along that path.

That is

Work done\({\rm{ = }}\mathop {{\rm{F}} \cdot {\rm{dr}}}\limits_{\rm{C}} \)

Note that

\({\rm{dr = dxi + dyj}}\)

Given that

\({\rm{F(x,y) = }}{{\rm{x}}^{\rm{2}}}{\rm{i + y}}{{\rm{e}}^{\rm{x}}}{\rm{j}}\)

Therefore,

Work done

\(\begin{array}{l}{{\rm{ = }}_{\rm{C}}}{{\rm{x}}^{\rm{2}}}{\rm{i + y}}{{\rm{e}}^{\rm{x}}}{\rm{j}} \cdot {\rm{(dxi + dyj)}}\\{{\rm{ = }}_{\rm{C}}}{{\rm{x}}^{\rm{2}}}{\rm{dx + y}}{{\rm{e}}^{\rm{x}}}{\rm{dy}}\end{array}\)

Given that \({\rm{C:x = }}{{\rm{y}}^{\rm{2}}}{\rm{ + 1}}\)

Therefore,

\({\rm{y = }}\sqrt {{\rm{x - 1}}} \;\;\;{\rm{ and }}\;\;\;{\rm{dy = }}\frac{{{\rm{dx}}}}{{{\rm{2}}\sqrt {{\rm{x - 1}}} }}\)

Replace the value of \({\rm{y}}\)and\({\rm{dy}}\),To get an integral completely in terms of \({\rm{x}}\)

Work done

\(\begin{array}{l}{\rm{ = }}\;\;\;{{\rm{x}}^{\rm{2}}}{\rm{dx + }}\sqrt {{\rm{x - 1}}} {{\rm{e}}^{\rm{x}}}\frac{{{\rm{dx}}}}{{{\rm{2}}\sqrt {{\rm{x - 1}}} }}{\rm{ }}\\{{\rm{ = }}_{\rm{C}}}{{\rm{x}}^{\rm{2}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{2}}}{{\rm{e}}^{\rm{x}}}{\rm{dx}}\end{array}\)

02

Evaluate the work is done

Integrate the works done with respect to \({\rm{x}}\) and move from \({\rm{(1,0) to (2,1)}}\), \({\rm{x}}\) increases from the works done in step1.

Work done

\(\begin{array}{l}{\rm{ = }}_{\rm{1}}^{\rm{2}}{{\rm{x}}^{\rm{2}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{2}}}{{\rm{e}}^{\rm{x}}}{\rm{dx}}\\{\rm{ = }}\frac{{{{\rm{x}}^{\rm{3}}}}}{{\rm{3}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{2}}}{{\rm{e}}^{\rm{x}}}^{\rm{2}}\\{\rm{ = }}\frac{{{{\rm{2}}^{\rm{3}}}}}{{\rm{3}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{2}}}{{\rm{e}}^{\rm{2}}}{\rm{ - }}\frac{{{{\rm{1}}^{\rm{3}}}}}{{\rm{3}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{2}}}{{\rm{e}}^{\rm{1}}}\\{\rm{ = }}\frac{{\rm{8}}}{{\rm{3}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{2}}}{{\rm{e}}^{\rm{2}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{3}}}{\rm{ - }}\frac{{\rm{e}}}{{\rm{2}}}\\{\rm{ = }}\frac{{\rm{7}}}{{\rm{3}}}{\rm{ + }}\frac{{{{\rm{e}}^{\rm{2}}}{\rm{ - e}}}}{{\rm{2}}}\end{array}\)

Therefore, the work done is\({\rm{ = }}\frac{{\rm{7}}}{{\rm{3}}}{\rm{ + }}\frac{{{{\rm{e}}^{\rm{2}}}{\rm{ - e}}}}{{\rm{2}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free