Work done along a path is the line Integral along that path.
That is
Work done\({\rm{ = }}\mathop {{\rm{F}} \cdot {\rm{dr}}}\limits_{\rm{C}} \)
Note that
\({\rm{dr = dxi + dyj}}\)
Given that
\({\rm{F(x,y) = }}{{\rm{x}}^{\rm{2}}}{\rm{i + y}}{{\rm{e}}^{\rm{x}}}{\rm{j}}\)
Therefore,
Work done
\(\begin{array}{l}{{\rm{ = }}_{\rm{C}}}{{\rm{x}}^{\rm{2}}}{\rm{i + y}}{{\rm{e}}^{\rm{x}}}{\rm{j}} \cdot {\rm{(dxi + dyj)}}\\{{\rm{ = }}_{\rm{C}}}{{\rm{x}}^{\rm{2}}}{\rm{dx + y}}{{\rm{e}}^{\rm{x}}}{\rm{dy}}\end{array}\)
Given that \({\rm{C:x = }}{{\rm{y}}^{\rm{2}}}{\rm{ + 1}}\)
Therefore,
\({\rm{y = }}\sqrt {{\rm{x - 1}}} \;\;\;{\rm{ and }}\;\;\;{\rm{dy = }}\frac{{{\rm{dx}}}}{{{\rm{2}}\sqrt {{\rm{x - 1}}} }}\)
Replace the value of \({\rm{y}}\)and\({\rm{dy}}\),To get an integral completely in terms of \({\rm{x}}\)
Work done
\(\begin{array}{l}{\rm{ = }}\;\;\;{{\rm{x}}^{\rm{2}}}{\rm{dx + }}\sqrt {{\rm{x - 1}}} {{\rm{e}}^{\rm{x}}}\frac{{{\rm{dx}}}}{{{\rm{2}}\sqrt {{\rm{x - 1}}} }}{\rm{ }}\\{{\rm{ = }}_{\rm{C}}}{{\rm{x}}^{\rm{2}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{2}}}{{\rm{e}}^{\rm{x}}}{\rm{dx}}\end{array}\)