Mass of the hemisphere \((m)\) is,

Rearrange the equation.
\(K = \frac{m}{{2\pi {a^2}}}\)
Due to symmetry\({M_{xz}} = {M_{yz}} = 0\)that is\(\bar x = \bar y = 0\).
Therefore,

By using the spherical coordinates to parameterize the sphere, consider
\({\rm{r}}(f,\theta ) = a\sin f\cos \theta {\rm{i}} + a\sin f\sin \theta {\rm{j}} + a\cos f{\rm{k }}\forall {\rm{ }}0 \le \theta \le 2\pi {\rm{ , }}0 \le f \le \frac{\pi }{2}{\rm{. }}\)
Find\({{\bf{r}}_f}\).
Substitute\(a\sin f\cos \theta \)for\(x,a\sin f\sin \theta \)for\(y\)and\(a\cos f\)for\(z\)in equation (3),
\(\begin{array}{l}{{\rm{r}}_\phi } = \frac{\partial }{{\partial \phi }}(a\sin \phi \cos \theta ){\rm{i}} + \frac{\partial }{{\partial \phi }}(a\sin \phi \sin \theta ){\rm{j}} + \frac{\partial }{{\partial \phi }}(a\cos \phi ){\rm{k}}\\ = (a\cos \theta )\frac{\partial }{{\partial \phi }}(\sin \phi ){\rm{i}} + (a\sin \theta )\frac{\partial }{{\partial \phi }}(\sin \phi ){\rm{j}} + (a)\frac{\partial }{{\partial \phi }}(\cos \phi ){\rm{k}}\\ = a\cos \theta \cos \phi {\rm{i}} + a\sin \theta \cos \phi {\rm{j}} - a\sin \phi {\rm{k}}\end{array}\)
Find\({{\rm{r}}_\theta }\).
Substitute\(a\sin f\cos \theta \)for\(x,a\sin f\sin \theta \)for\(y\)and\(a\cos f\)for\(z\)in equation (4),
\(\begin{array}{l}{{\rm{r}}_\theta } = \frac{\partial }{{\partial \theta }}(a\sin \phi \cos \theta ){\rm{i}} + \frac{\partial }{{\partial \theta }}(a\sin \phi \sin \theta ){\rm{j}} + \frac{\partial }{{\partial \theta }}(a\cos \phi ){\rm{k}}\\ = (a\sin \phi )\frac{\partial }{{\partial \theta }}(\cos \theta ){\rm{i}} + (a\sin \phi )\frac{\partial }{{\partial \theta }}(\sin \theta ){\rm{j}} + (a\cos \phi )\frac{\partial }{{\partial \theta }}(1){\rm{k}}\\ = (a\sin \phi )( - \sin \theta ){\rm{i}} + (a\sin \phi )(\cos \theta ){\rm{j}} + (a\cos \phi )(0){\rm{k}}\\ = - a\sin \phi \sin \theta {\rm{i}} + a\sin \phi \cos \theta {\rm{j}}\end{array}\)
Find \({{\rm{r}}_f} \times {{\rm{r}}_\theta }\).
Simplify the equation.
\(\begin{array}{l}\left| {{{\rm{r}}_f} \times {{\rm{r}}_\theta }} \right| = \sqrt {{a^4}{{\sin }^4}f + {a^4}{{\cos }^2}f{{\sin }^2}f} \\ = \sqrt {{a^4}{{\sin }^2}f} = {a^2}\sin f\end{array}\)