\({{\rm{r}}^\prime }{\rm{(t) = (1 - cost)i + sintj}}\)
Plug in all the values and solve the line inte\({\rm{F(x,y) = xi + (y + 2)j}}\)
In moving an object along an arch of the cycloid which is parameterized by
\({\rm{r(t) = (t - sint)i + (1 - cost)j,}}\;\;\;{\rm{0}} \le {\rm{t}} \le {\rm{2\pi }}\)
Solve by using the formula
\({\rm{F}} \cdot {\rm{dr = }}_{\rm{a}}^{\rm{b}}{\rm{F(r(t))}} \cdot {{\rm{r}}^\prime }{\rm{(t)dt}}\)
\({\rm{a = 0,b = 2\pi ,x(t) = t - sint,y(t) = 1 - cost}}\)
Differentiate \({\rm{x}}\)and \({\rm{y}}\) in terms of \({\rm{t}}\)
\(\begin{aligned}&{{\rm{x}}^\prime }{\rm{(t) = (1 - cost)dt}}\\&{{\rm{y}}^\prime }(t) = \sin tdt\end{aligned}\)
Therefore,
\({{\text{r}}^{\prime }}\text{(t)=(1-cost)i+sintj}\)
Plug in all the values and solve the line integral to get the work done
\(\begin{aligned}{\rm{F}} \cdot {\rm{dr = }}&_{\rm{a}}^{\rm{b}}{\rm{F(r(t))}} \cdot {{\rm{r}}^\prime }{\rm{(t)dt}}\\&{\rm{ = }}_{\rm{0}}^{{\rm{2\pi }}}{\rm{((t - sint)i + (1 - cost + 2)j)}} \cdot {\rm{((1 - cost)i + sintj)}}\\&{\rm{ = }}\int_{{\rm{2\pi }}} {{\rm{(t - sint)}}} {\rm{(1 - cost) + (3 - cost)sintdt}}\\&{\rm{ = }}\int_{{\rm{2\pi }}} {\rm{t}} {\rm{ - tcost - sint + sintcost + 3sint - sintcostdt}}\end{aligned}\)