Chapter 13: Q36E (page 796)
Maxwell's equations relating the electric field \(E\)and magnetic field \(H\)as they vary with time in a region containing no charge and no current can be stated as follows:
\(divE = 0\;\;\;divH = 0\)
\(curlE = - \frac{1}{c}\frac{{\partial H}}{{\partial t}}\;\;\;curlH = \frac{1}{c}\frac{{\partial E}}{{\partial t}}\)
where\(c\)is the speed of light. Use these equations to prove the following:
(a) \(\nabla \times (\nabla \times E) = - \frac{1}{{{c^2}}}\frac{{{\partial ^2}E}}{{\partial {t^2}}}\)
(b) \(\nabla \times (\nabla \times H) = - \frac{1}{{{c^2}}}\frac{{{\partial ^2}H}}{{\partial {t^2}}}\)
(c) \({\nabla ^2}E = \frac{1}{{{c^2}}}\frac{{{\partial ^2}E}}{{\partial {t^2}}}\;\;\;\) (Hint: Use Exercise 27.)
(d) \({\nabla ^2}H = \frac{1}{{{c^2}}}\frac{{{\partial ^2}H}}{{\partial {t^2}}}\)
Short Answer
It is proved that,
(a)\(\nabla \times (\nabla \times E) = - \frac{1}{{{c^2}}}\frac{{{\partial ^2}E}}{{\partial {t^2}}}\)
(b)\(\nabla \times (\nabla \times H) = - \frac{1}{{{c^2}}}\frac{{{\partial ^2}H}}{{\partial {t^2}}}\)
(c)\({\nabla ^2}E = \frac{1}{{{c^2}}}\frac{{{\partial ^2}E}}{{\partial {t^2}}}\;\;\;\)
(d)\({\nabla ^2}H = \frac{1}{{{c^2}}}\frac{{{\partial ^2}H}}{{\partial {t^2}}}\)