Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the mass of a thin wire which is in the shape of a helix and center of mass of a thin wire which is in the shape of a helix.

Short Answer

Expert verified

The mass of a helix shaped thin wire is \(\sqrt 2 \left( {\frac{8}{3}{\pi ^3} + 2\pi } \right)\) and center of mass of a helix shaped thin wire is \(\left( {\frac{{3\pi \left( {2{\pi ^2} + 1} \right)}}{{\left( {4{\pi ^2} + 3} \right)}},\frac{6}{{\left( {4{\pi ^2} + 3} \right)}}, - \frac{{12\pi }}{{\left( {4{\pi ^2} + 3} \right)}}} \right)\).

Step by step solution

01

Given data

The parametric equations of the helix shaped thin wire are\(x = t,y = \cos t,z = \sin t,0 \le t \le 2\pi \). The density function of the thin wire is the square of the distance from the origin.

02

Concept used

The mass of a thin wire which is in the shape of a curve\(C\)by the use of the equation as follows:\(m = \int_C \rho (x,y)ds\).

Here,\(\rho (x,y)\)is the linear density and\(ds\)is the change in surface.

03

Write the formulae for the center of mass of a thin wire which is in the shape of a space curve

\(C\)

Write the expression for the mass of the thin wire as follows:

\(m = \int_C \rho (x,y,z)ds\) ……. (1)

Write the expression for \(ds\) as follows:

\(ds = \sqrt {{{\left( {\frac{{dx}}{{dt}}} \right)}^2} + {{\left( {\frac{{dy}}{{dt}}} \right)}^2} + {{\left( {\frac{{dz}}{{dt}}} \right)}^2}} dt\) ……. (2)

Write the expression to find density function as follows:

\(\rho (x,y,z) = {d^2}\) ……. (3)

Here, \(d\) is the distance between any point to the wire to the origin.

Write the expression to find distance between two points \(\left( {{x_1},{y_1},{z_1}} \right)\) and \(\left( {{x_2},{y_2},{z_2}} \right)\) as follows:

\(d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2} + {{\left( {{z_2} - {z_1}} \right)}^2}} \) ……. (4)

Write the expression to find the \(x\)-coordinate of a center of mass of the thin wire as follows: \(\bar x = \frac{1}{m}\int_C x \rho (x,y,z)ds\). ……. (5)

Formula for the \(y\)-coordinate of center of mass of the thin wire as follows:

\(\bar y = \frac{1}{m}\int_C y \rho (x,y,z)ds\) ……. (6)

Formula for the \(z\)-coordinate of center of mass of the thin wire as follows:

\(\bar z = \frac{1}{m}\int_C z \rho (x,y,z)ds\) ……. (7)

Consider a point \((x,y,z)\) on the thin wire.

As the density function \(\rho (x,y,z)\) is the square of the distance between any point on the wire to the origin, find the distance between the point \((x,y,z)\) to the origin as follows:

Substitute \(x\) for \({x_2},y\) for \({y_2},z\) for \({z_2},0\) for \({x_1},0\) for \({y_1}\), and 0 for \({z_1}\) in equation (4) as follows:

\(\begin{array}{c}d = \sqrt {{{(x - 0)}^2} + {{(y - 0)}^2} + {{(z - 0)}^2}} \\ = \sqrt {{x^2} + {y^2} + {z^2}} \end{array}\)

Calculation of density function \(\rho (x,y,z)\) as follows:

Substitute \(\sqrt {{x^2} + {y^2} + {z^2}} \) for \(d\) in equation (3) as follows:

\(\begin{array}{c}\rho (x,y,z) = {\left( {\sqrt {{x^2} + {y^2} + {z^2}} } \right)^2}\\ = {x^2} + {y^2} + {z^2}\end{array}\)

Substitute \(t\) for \(x,\cos ty\), and \(\sin t\) for \(z\) as follows:

04

Calculation of \(ds\)

Substitute \(t\) for \(x,\cos t\) for \(y\), and \(\sin t\) for \(z\) in equation (2) as follows:

\(\begin{aligned}ds & = \sqrt {{{\left( {\frac{d}{{dt}}t} \right)}^2} + {{\left( {\frac{d}{{dt}}\cos t} \right)}^2} + {{\left( {\frac{d}{{dt}}\sin t} \right)}^2}} dt\\ & = \sqrt {{{(1)}^2} + {{( - \sin t)}^2} + {{(\cos t)}^2}} dt\\ & = \sqrt {1 + {{\sin }^2}t + {{\cos }^2}t} dt\quad \end{aligned}\)

Simplify the expression as follows:

\(\begin{aligned}ds &= \sqrt {1 + (1)} dtds\\ &= \sqrt 2 dt\end{aligned}\)

05

Calculation of \(m\)

Substitute \(\left( {{t^2} + 1} \right)\) for \(\rho (x,y,z),\sqrt 2 dt\) for \(ds,0\) for lower limit, and \(2\pi \) for upper limit in equation (1) as follows:

\(\begin{aligned}m &= \int_0^{2\pi } {\left( {{t^2} + 1} \right)} (\sqrt 2 dt)\\ &= \sqrt 2 \int_0^{2\pi } {\left( {{t^2} + 1} \right)} dt\\ & = \sqrt 2 \left[ {\frac{{{t^3}}}{3} + t} \right]_0^{2\pi }\\ & = \sqrt 2 \left\{ {\left[ {\frac{{{{(2\pi )}^3}}}{3} + 2\pi } \right] - \left( {\frac{{{0^3}}}{3} + 0} \right)} \right\}\end{aligned}\)

Simplify the expression as follows:

\(\begin{aligned}m & = \sqrt 2 \left[ {\left( {\frac{{8{\pi ^3}}}{3} + 2\pi } \right) - 0} \right]\\ & = \sqrt 2 \left( {\frac{8}{3}{\pi ^3} + 2\pi } \right)\end{aligned}\)

Thus, the mass of a helix shaped thin wire is \(\sqrt 2 \left( {\frac{8}{3}{\pi ^3} + 2\pi } \right)\).

06

Calculation of \(\bar x\)

Substitute \(\sqrt 2 \left( {\frac{8}{3}{\pi ^3} + 2\pi } \right)\) for \(m,t\) for \(x,\left( {{t^2} + 1} \right)\) for \(\rho (x,y,z),\sqrt 2 dt\) for \(ds,0\) for lower limit, and \(2\pi \) for upper limit in equation (5) as follows:

\(\begin{aligned}\bar x & = \frac{1}{{\sqrt 2 \left( {\frac{8}{3}{\pi ^3} + 2\pi } \right)}}\int_0^{2\pi } {(t)} \left( {{t^2} + 1} \right)(\sqrt 2 dt)\\ & = \frac{{\sqrt 2 }}{{\sqrt 2 \left( {\frac{8}{3}{\pi ^3} + 2\pi } \right)}}\int_0^{2\pi } {\left( {{t^3} + t} \right)} dt\\ & = \frac{1}{{\left( {\frac{8}{3}{\pi ^3} + 2\pi } \right)}}\left[ {\frac{{{t^4}}}{4} + \frac{{{t^2}}}{2}} \right]_0^{2\pi }\\ & = \frac{3}{{4\left( {8{\pi ^3} + 6\pi } \right)}}\left[ {{t^4} + 2{t^2}} \right]_0^{2\pi }\end{aligned}\)

Simplify the expression as follows:

\(\begin{aligned}\bar x & = \frac{3}{{4\left( {8{\pi ^3} + 6\pi } \right)}}\left\{ {\left[ {{{(2\pi )}^4} + 2{{(2\pi )}^2}} \right] - \left[ {{0^4} + 2{{(0)}^2}} \right]} \right\}\\ & = \frac{3}{{4\left( {8{\pi ^3} + 6\pi } \right)}}\left( {16{\pi ^4} + 8{\pi ^2}} \right)\\ & = \frac{{3\left( {8{\pi ^2}} \right)\left( {2{\pi ^2} + 1} \right)}}{{4(2\pi )\left( {4{\pi ^2} + 3} \right)}}\\ & = \frac{{3\pi \left( {2{\pi ^2} + 1} \right)}}{{\left( {4{\pi ^2} + 3} \right)}}\end{aligned}\)

07

Calculation of \(\bar y\)

Substitute \(\sqrt 2 \left( {\frac{8}{3}{\pi ^3} + 2\pi } \right)\) for \(m,\cos t\) for \(y,\left( {{t^2} + 1} \right)\) for \(\rho (x,y,z),\sqrt 2 dt\) for \(ds,0\) for lower limit, and \(2\pi \) for upper limit in equation (6) as follows:

\(\begin{aligned}\bar y & = \frac{1}{{\sqrt 2 \left( {\frac{8}{3}{\pi ^3} + 2\pi } \right)}}\int_0^{2\pi } {(\cos t)} ({t^2} + 1)(\sqrt 2 dt)\\ & = \frac{{\sqrt 2 }}{{\sqrt 2 \left( {\frac{8}{3}{\pi ^3} + 2\pi } \right)}}\int_0^{2\pi } {({t^2}\cos t + \cos t)} dt\\ & = \frac{3}{{\left( {8{\pi ^3} + 6\pi } \right)}}\left[ {\int\limits_0^{2\pi } {\left( {{t^2}\cos t} \right)dt + \int\limits_0^{2\pi } {\left( {\cos t} \right)dt} } } \right]\\ & = \frac{3}{{\left( {8{\pi ^3} + 6\pi } \right)}}\left[ {\left( {{t^2} - 2} \right)\sin t + 2t\cos t} \right]_0^{2\pi } + \left[ {\sin t} \right]_0^{2\pi }\end{aligned}\)

Simplify the expression as follows:

\(\begin{aligned}\bar y & = \frac{3}{{\left( {8{\pi ^3} + 6\pi } \right)}}\left( {\begin{aligned}{*{20}{l}}{\left\{ {\begin{aligned}{*{20}{l}}{\left. {\left[ {{{(2\pi )}^2} - 2} \right)\sin (2\pi ) + 2(2\pi )\cos (2\pi )} \right]}\\{ - \left[ {\left( {{0^2} - 2} \right)\sin (0) + 2(0)\cos (0)} \right]}\\{ + [\sin (2\pi ) - \sin (0)]}\end{aligned}} \right\}}\end{aligned}} \right)\\ & = \frac{3}{{\left( {8{\pi ^3} + 6\pi } \right)}}\left( {\left\{ {\left[ {\left( {4{\pi ^2} - 2} \right)(0) + 4\pi (1)} \right] - 0} \right\} + 0} \right)\\ & = \frac{{3(4\pi )}}{{(2\pi )\left( {4{\pi ^2} + 3} \right)}}\\ & = \frac{6}{{\left( {4{\pi ^2} + 3} \right)}}\end{aligned}\)

08

Calculation of \(\bar z\)

Substitute \(\sqrt 2 \left( {\frac{8}{3}{\pi ^3} + 2\pi } \right)\) for \(m\), \(\sin t\) for \(z,\left( {{t^2} + 1} \right)\) for \(\rho (x,y,z),\sqrt 2 dt\) for \(ds,0\) for lower limit, and \(2\pi \) for upper limit in equation ( 7 ) as follows:

\(\begin{aligned}\bar z & = \frac{1}{{\sqrt 2 \left( {\frac{8}{3}{\pi ^3} + 2\pi } \right)}}\int_0^{2\pi } {(\sin t)} ({t^2} + 1)(\sqrt 2 dt)\\ & = \frac{{\sqrt 2 }}{{\sqrt 2 \left( {\frac{8}{3}{\pi ^3} + 2\pi } \right)}}\int_0^{2\pi } {({t^2}\sin t} + \sin t)dt\\ & = \frac{3}{{8{\pi ^3} + 6\pi }}\left[ {\int_0^{2\pi } {({t^2}\sin t} )dt + \int\limits_0^{2\pi } {(\sin t)} dt} \right]\\ & = \frac{3}{{8{\pi ^3} + 6\pi }}\left[ {(2t\sin t - ({t^2} - 2)\cos t} \right]_0^{2\pi } - \left[ {\cos t} \right]_0^{2\pi }\end{aligned}\)

Simplify the expression as follows:

\(\begin{aligned}\bar z & = \frac{3}{{\left( {8{\pi ^3} + 6\pi } \right)}} - \left[ {2(2\pi )\sin \;(2\pi ) - \left( {{{(2\pi )}^2} - 2} \right)\cos \;(2\pi ) - [2(0)\sin \;(0) - \left( {{{(0)}^2} - 2} \right)\cos \;(2(0))] - [\cos \;(2\pi ) - \cos \;(0)]} \right]\\ & = \frac{3}{{\left( {8{\pi ^3} + 6\pi } \right)}}\left( {\left\{ {\left[ {4\pi (0) - \left( {4{\pi ^2} - 2} \right)(1)} \right] - [ - ( - 2)(1)]} \right\} - [1 - 1]} \right)\\ & = \frac{3}{{(2\pi )\left( {4{\pi ^2} + 3} \right)}}\left( { - 4{\pi ^2} + 2 - 2} \right)\\ & = - \frac{{6\left( {4{\pi ^2}} \right)}}{{(2\pi )\left( {4{\pi ^2} + 3} \right)}}\end{aligned}\)

Thus, the center of mass of a helix shaped thin wire is: \(\left( {\frac{{3\pi \left( {2{\pi ^2} + 1} \right)}}{{\left( {4{\pi ^2} + 3} \right)}},\frac{6}{{\left( {4{\pi ^2} + 3} \right)}}, - \frac{{12\pi }}{{\left( {4{\pi ^2} + 3} \right)}}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a). To show: The parametric equations \(x = a\cosh u\cos v,y = b\cosh u\sin v,z = c\sinh u\) represent a hyperboloid of one sheet.

(b). To draw: The graph of a hyperboloid of one sheet with the parametric equations \(x = a\cosh u\cos v,y = b\cosh u\sin v,z = c\sinh u\) for \(a = 1,b = 2\), and \(c = 3\).

(c). To find: The expression for surface area of the hyperboloid of one sheet with the parametric equations \(x = a\cosh u\cos v,y = b\cosh u\sin v,z = c\sinh u\) for \(a = 1,b = 2\), and \(c = 3\).

(a) Find a function \(f\) such that \({\bf{F}} = \nabla f\) and (b) use part (a) to evaluate \(\int_C {\bf{F}} \cdot d{\bf{r}}\) along the given curve \(C\).

\({\bf{F}}(x,y,z) = yz{e^{xz}}{\bf{i}} + {e^{xz}}{\bf{j}} + xy{e^{xz}}{\bf{k}}\),

\({\bf{F}}(x,y,z) = xy{e^z}{\bf{i}} + x{y^2}{z^3}{\bf{j}} - y{e^z}{\bf{k}}\), \(S\) is the surface of the box bounded by the coordinate planes and the planes \(x = 3,y = 2\), and \(z = 1\).

Evaluate the line integral\(\int_{\rm{C}} {\rm{F}} {\rm{ \times dr}}\) where \({\rm{C}}\)is given by the vector function\({\rm{r(t)}}\).

\(\begin{array}{c}{\rm{F(x,y,z) = xi + yj + xyk,}}\\{\rm{r(t) = costi + sintj + tk,}}\;\;\;{\rm{0}} \le {\rm{t}} \le {\rm{\pi }}\end{array}\)

\({\bf{F}}(x,y,z) = {x^2}yz{\bf{i}} + x{y^2}z{\bf{j}} + xy{z^2}{\bf{k}}\), \(S\) is the surface of the box enclosed by the planes \(x = 0\), \({\bf{x}} = {\bf{a}}\), \({\bf{y}} = {\bf{0}},\,\,{\bf{y}} = {\bf{b}},\,\,{\bf{z}} = {\bf{0}},\,\,z = c\), where \(a,b\), and \(c\) are positive numbers.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free