Consider the vector equation of the plane.
\(r\left( {u,v} \right) = \left\langle {u + v,2 - 3u,1 + u - v} \right\rangle \)where \(0 \le u \le 2, - 1 \le v \le 1\)
Then
\(\begin{array}{l}{r_u}\left( {u,v} \right) = \left\langle {1, - 3,1} \right\rangle \\{r_v}\left( {u,v} \right) = \left\langle {1,0, - 1} \right\rangle \end{array}\)
\(\begin{array}{c}\left\langle {1, - 3,1} \right\rangle \times \left\langle {1,0, - 1} \right\rangle = \left\langle { - 3\left( { - 1} \right) - 0\left( 1 \right), - 1\left( 1 \right) - 1\left( 1 \right),1\left( 0 \right) - 1\left( { - 3} \right)} \right\rangle \\ = \left\langle {3, - 2,3} \right\rangle \end{array}\)
Next, find the length of this cross-product vector.
\(\left| {{r_u} \times {r_v}} \right| = \sqrt {{3^2} + {{\left( { - 2} \right)}^2} + {3^2}} = \sqrt {22} \)
Finally, integrate the length over the domain region, \(D = \left\{ {\left( {u,v} \right)|0 \le u \le 2, - 1 \le v \le 1} \right\}\) .