Need to find the \({\rm{curlF}}\)
\({\rm{curlF = }}\left( {{{\rm{R}}_{\rm{y}}}{\rm{ - }}{{\rm{Q}}_{\rm{z}}}} \right){\rm{i + }}\left( {{{\rm{P}}_{\rm{z}}}{\rm{ - }}{{\rm{R}}_{\rm{x}}}} \right){\rm{j + }}\left( {{{\rm{Q}}_{\rm{x}}}{\rm{ - }}{{\rm{P}}_{\rm{y}}}} \right){\rm{k}}\)
Where \({\rm{F = Pi + Qj + Rk}}\)
Here
\({\rm{F(x,y,z) = xy i + yz j + zx k}}\)
compute the Required partial derivatives,
\({\rm{P = xy}} \Rightarrow {{\rm{P}}_{\rm{y}}}{\rm{ = x}}\)and \({{\rm{P}}_{\rm{z}}}{\rm{ = 0}}\)
\({\rm{Q = yz}} \Rightarrow {{\rm{Q}}_{\rm{x}}}{\rm{ = 0}}\) and \({{\rm{Q}}_{\rm{z}}}{\rm{ = y}}\)
\({\rm{R = zx}} \Rightarrow {{\rm{R}}_{\rm{x}}}{\rm{ = z}}\) and \({{\rm{R}}_{\rm{y}}}{\rm{ = 0}}\)
Therefore,
\(\begin{array}{l}{\rm{curlF = (0 - y)i + (0 - z)j + (0 - x)k}}\\{\rm{curlF = - yi - zj - xk}}\end{array}\)
\(\begin{aligned} \iint_{S}{curl}F\cdot dS&=\iint_{D}{-}P\left( \frac{\partial g}{\partial x} \right)-Q\left( \frac{\partial g}{\partial y} \right)+RdA \\ & =\iint_{D}{-}(-y)(-1)-(-z)(-1)-xdA \\ & =\iint_{D}{-}y-z-xdA \end{aligned}\)
Note \({\rm{x + y + z = 1}}\)
\(=-\iint_{D}{d}A\)
Note that \({\rm{D}}\) is the \({\rm{xy}}\) plane projection of the surface \(S\).
\({\rm{D}}\) is the region inside the triangle with vertices \({\rm{(0,0)}}\),\({\rm{(1,0)}}\) and \({\rm{(0,1)}}\)
And \(\iint_{-}{D}dA\) is the area of that triangle, which is \(\frac{{\rm{1}}}{{\rm{2}}}{\rm{ * Height * Base = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ *1 * 1 = }}\frac{{\rm{1}}}{{\rm{2}}}\).
Therefore,
\(\int_{C}{F}\cdot dr=\iint_{S}{curl}F\cdot dS=-\iint_{D}{d}A=-\frac{1}{2}\). .
Stokes’ Theorem evaluation \(\int_{\rm{C}} {\rm{F}} \cdot {\rm{dr = - }}\frac{{\rm{1}}}{{\rm{2}}}\).