Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) Suppose that \({\bf{F}}\) is an inverse square force field, that is,

\({\bf{F}}({\bf{r}}) = \frac{{c{\bf{r}}}}{{|{\bf{r}}{|^3}}}\)

for some constant \(c\), where \({\bf{r}} = x{\bf{i}} + y{\bf{j}} + z{\bf{k}}\). Find the work done by \({\bf{F}}\) in moving an object from a point \({P_1}\) along a path to a point \({P_2}\) in terms of the distances \({d_1}\) and \({d_2}\) from these points to the origin.

(b) An example of an inverse square field is the gravitational field \({\bf{F}} = - (mMG){\bf{r}}/|{\bf{r}}{|^3}\) discussed in Example \(4\) in Section \({\rm{13}}{\rm{.1}}\). Use part (a) to find the work done by the gravitational field when the earth moves from aphelion (at a maximum distance of \(1.52 \times {10^8}\;{\rm{km}}\) from the sun) to perihelion (at a minimum distance of \(1.47 \times {10^8}\;{\rm{km}}\) ). (Use the values \(m = 5.97 \times {10^{24}}\;{\rm{kg}},M = 1.99 \times {10^{30}}\;{\rm{kg}}\), and \(G = 6.67 \times {10^{ - 11}}\;{\rm{N}} \cdot {{\rm{m}}^2}/{\rm{k}}{{\rm{g}}^2}\).)

(c) Another example of an inverse square field is the electric force field \({\bf{F}} = \varepsilon qQ{\bf{r}}/|{\bf{r}}{|^3}\) discussed in Example 5 in Section \({\rm{13}}{\rm{.1}}\). Suppose that an electron with a charge of \( - 1.6 \times {10^{ - 19}}{\rm{C}}\) is located at the origin. A positive unit charge is positioned a distance \({10^{ - 12}}\;{\rm{m}}\) from the electron and moves to a position half that distance from the electron. Use part (a) to find the work done by the electric force field. (Use the value \(\left. {\varepsilon = 8.985 \times {{10}^9}.} \right)\)

Short Answer

Expert verified

a) The work done is\(c\left( {\frac{1}{{{d_1}}} - \frac{1}{{{d_2}}}} \right)\).

b) The work done by the gravitational field is\(1.77 \times {10^{32}}\;{\rm{J}}\).

c) The work done by the electric force field is\(1.423 \times {10^4}\;{\rm{J}}\).

Step by step solution

01

Given data

The inverse square force field is\({\rm{F}}({\rm{r}}) = \frac{{c{\rm{r}}}}{{|{\rm{r}}{|^3}}}\), where\({\rm{r}} = x{\rm{i}} + y{\rm{j}} + z{\rm{k}}\).

The inverse square force field is\({\rm{F}}({\rm{r}}) = - mMG\frac{{\rm{r}}}{{|{\rm{r}}{|^3}}}\)or\({\rm{F}}({\rm{r}}) = - mMG\left( {\frac{1}{{{d_1}}} - \frac{1}{{{d_2}}}} \right)\), where\(c = - mMG\).

\(\begin{array}{l}m = 5.97 \times {10^{24}}\;{\rm{kg}}\\M = 1.99 \times {10^{30}}\;{\rm{kg}}\\G = 6.67 \times {10^{ - 11}}{\rm{N}}{{\rm{m}}^2}/{\rm{k}}{{\rm{g}}^2}n\\{d_1} = 1.52 \times {10^8}\;{\rm{km and }}{d_2} = 1.47 \times {10^8}\;{\rm{km}}\end{array}\)

The inverse square force field is\({\rm{E}} = EqQ\frac{{\rm{r}}}{{\mid {{\rm{r}}^3}}}\)or\({\rm{E}} = EqQ\left( {\frac{1}{{{d_1}}} - \frac{1}{{{d_2}}}} \right)\), where\(c = EqQ.\)

\(\begin{array}{l}q = 1,Q = 1.6 \times {10^{ - 19}}{\rm{c}}\\E = 8985 \times {10^{10}}{\rm{N}}{{\rm{m}}^2}/{{\rm{c}}^2}\\{d_1} = {10^{ - 12}}\;{\rm{m and }}{d_2} = \frac{1}{2} \times {10^{ - 12}}\;{\rm{m}}\end{array}\)

02

Inverse square law

Inverse square law says that “the Intensity of the radiation is inversely proportional to the square of the distance”.

03

Find the work done by \({\bf{F}}\) in moving the object from a point \({P_1}\) to a point \({P_2}\)

a)

The inverse square force field is\({\rm{F}}({\rm{r}}) = \frac{{c{\rm{r}}}}{{|{\rm{r}}{|^3}}}\), where\({\rm{r}} = x{\rm{i}} + y{\rm{j}} + z{\rm{k}}\).

Substitute\({\rm{r}} = x{\rm{i}} + y{\rm{j}} + z{\rm{k}}\)in\({\rm{F}}({\rm{r}})\),

\({\rm{F}}(x,y,z) = \frac{{c(xi + yj + zk)}}{{{{(xi + yj + zk)}^{\frac{3}{2}}}}}\)

If there exists a function\(f\)such that\(\nabla f = {\rm{F}}\).

That is,

\(\begin{array}{c}{f_x} = \frac{{cx}}{{{{(xi + yj + zk)}^{\frac{3}{2}}}}}\\{f_x} = \frac{{cy}}{{{{(xi + yj + zk)}^{\frac{3}{2}}}}}\\{f_x} = \frac{{cz}}{{{{(xi + yj + zk)}^{\frac{3}{2}}}}}\end{array}\)

Integrate equation (1) with respect to\(x\),

\(f(x,y,z) = \frac{{ - c}}{{\sqrt {{x^2} + {y^2} + {z^2}} }} + g(y,z)\)

Here\(g(y,z)\)is constant.

Differentiate equation (4) partially with respect to\(y\),

\({f_x}(x,y,z) = \frac{{cy}}{{{{\left( {{x^2} + {y^2} + {z^2}} \right)}^{\frac{3}{2}}}}} + {g_y}(y,z)\)

Now compare the equations (2) and (5),\({g_y}(y,z) = 0\)

Integrate on both sides,

\(g(y,z) = h(z)\)

Here\(h(z)\)is constant.

Differentiate equation (4) partially with respect to\(z\),

\({f_z}(x,y,z) = \frac{{cz}}{{{{\left( {{x^2} + {y^2} + {z^2}} \right)}^{\frac{3}{2}}}}} + {g_z}(y,z)\)

Integrate on both sides,

\(g(y,z) = k(y)\)

Here\(k(y)\)is constant.

Now compare the equations (6) and (8),

\(g(y,z) = 0\)

Hence\(f(x,y,z) = \frac{{ - c}}{{\sqrt {{x^2} + {y^2} + {z^2}} }}\).

Obtain the work done by\({\bf{F}}\)in moving the object from a point\({P_1}\left( {{x_1},{y_1},{z_1}} \right)\)to a point\({P_2}\left( {{x_2},{y_2},{z_2}} \right)\)as follows.

\(\begin{aligned}\int_c {\bf{F}} \cdot d{\bf{r}} & = \int_c \nabla f \cdot d{\bf{r}}\\ & = f\left( {{P_2} - {P_1}} \right)\\ & = \frac{{ - c}}{{\sqrt {{x_2}^2 + {y_2}^2 + z_2^2} }} + \frac{c}{{\sqrt {{x_1}^2 + {y_1}^2 + {z_1}^2} }}\\ & = c\left( {\frac{1}{{{d_1}}} - \frac{1}{{{d_2}}}} \right)\end{aligned}\)

Thus, the work done is \(c\left( {\frac{1}{{{d_1}}} - \frac{1}{{{d_2}}}} \right)\).

04

The work done by the gravitational field for the given condition

b)

The inverse square force field is\({\rm{F}}({\rm{r}}) = - mMG\frac{{\rm{r}}}{{|{\rm{r}}{|^3}}}\)or\({\rm{F}}({\rm{r}}) = - mMG\left( {\frac{1}{{{d_1}}} - \frac{1}{{{d_2}}}} \right)\), where\(c = - mMG\).

\(\begin{array}{l}m = 5.97 \times {10^{24}}\;{\rm{kg}}\\M = 1.99 \times {10^{30}}\;{\rm{kg}}\\G = 6.67 \times {10^{ - 11}}{\rm{N}}{{\rm{m}}^2}/{\rm{k}}{{\rm{g}}^2}n\\{d_1} = 1.52 \times {10^8}\;{\rm{km and }}{d_2} = 1.47 \times {10^8}\;{\rm{km}}\end{array}\)

Substitute the values in\({\rm{F}}({\rm{r}})\),

\(\begin{aligned}{\bf{F}}({\bf{r}}) & = - \left( {5.97 \times {{10}^{24}}} \right)\left( {1.99 \times {{10}^{30}}} \right)\left( {6.67 \times {{10}^{ - 11}}} \right){\rm{N}}{{\rm{m}}^2}\left( {\frac{1}{{1.52 \times {{10}^8}}} - \frac{1}{{1.47 \times {{10}^8}}}} \right){\rm{k}}{{\rm{m}}^{ - 1}}\\ & = - 7.924 \times {10^{44}} \times {10^{ - 11}}(0.6578 - 0.6802){\rm{Nm}}\\ & = 7 - 924 \times {10^{33}} \times 0.02247{\rm{Nm}}\\ & = 1.77 \times {10^{32}}\;{\rm{J}}\end{aligned}\)

Thus, the work done by the gravitational field is \(1.77 \times {10^{32}}\;{\rm{J}}\).

05

The work done by the electric force field for the given condition

c)

The inverse square force field is\({\rm{E}} = EqQ\frac{{\rm{r}}}{{\mid {{\rm{r}}^3}}}\)or\({\rm{E}} = EqQ\left( {\frac{1}{{{d_1}}} - \frac{1}{{{d_2}}}} \right)\), where\(c = EqQ.\)

\(\begin{array}{l}q = 1,Q = 1.6 \times {10^{ - 19}}{\rm{c}}\\E = 8985 \times {10^{10}}{\rm{N}}{{\rm{m}}^2}/{{\rm{c}}^2}\\{d_1} = {10^{ - 12}}\;{\rm{m and }}{d_2} = \frac{1}{2} \times {10^{ - 12}}\;{\rm{m}}\end{array}\)

Substitute the values in\({\rm{E}}\),

\(\begin{aligned}{\bf{E}} & = 1\left( {8.985 \times {{10}^{10}}} \right)\left( { - 1.6 \times {{10}^{ - 19}}} \right){\rm{N}}{{\rm{m}}^2}\left( { - 1 \times {{10}^{12}}} \right){\rm{m}}\\ & = - 1.423 \times {10^{ - 8}}\left( { - 1 \times {{10}^{12}}} \right){\rm{Nm}}\\ & = 1.423 \times {10^4}\;{\rm{J}}\end{aligned}\)

Thus, the work done by the electric force field is \(1.423 \times {10^4}\;{\rm{J}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) Find a function \(f\) such that \({\bf{F}} - \nabla f\) and (b) use part (a) to evaluate \(\int_C {\bf{F}} \cdot d{\bf{r}}\) along the given curve\(C\).

\({\bf{F}}(x,y) - x{y^2}{\bf{i}} + {x^2}y{\bf{j}}\).

Use the Divergence Theorem to evaluate , where \({\bf{F}}(x,y,z) = {z^2}x{\bf{i}} + \left( {\frac{1}{3}{y^3} + \tan z} \right){\bf{j}} + \left( {{x^2}z + {y^2}} \right){\bf{k}}\)and \(S\) is the top half of the sphere \({x^2} + {y^2} + {z^2} = 1\) . (Hint: Note that \(S\) is not a closed surface. First compute integrals over \({S_1}\) and \({S_2}\), where \({S_1}\) is the disk , oriented downward, and \({S_2} = S \cup {S_1}\).)

  1. Show the parametric equation\(x = a\sin u\cos v,y = b\sin u\sin v,z = c\cos u,0 \le u \le \pi ,0 \le v \le 2\pi \) represents an ellipsoid.
  2. Draw the graph of an ellipsoid with the parametric equations\(x = a\sin u\cos v,y = b\sin u\sin v,z = c\cos u,0 \le u \le \pi ,0 \le v \le 2\pi {\rm{ for }}a = 1,b = 2,{\rm{ and }}c = 3\)
  3. Find the expression for surface area of the ellipsoid with the parametric equations\(x = a\sin u\cos v,y = b\sin u\sin v,z = c\cos u,0 \le u \le \pi ,0 \le v \le 2\pi {\rm{ for }}a = 1,b = 2,{\rm{ and }}c = 3\)

Match the vector field F on \({{\rm{R}}^{\rm{3}}}\)with the plots labelled I–IV. Give reasons for your choices.

\(F(x,y,z) = xi + yj + 3k\)

Determine whether of not \({\bf{F}}\) is a conservative vector field. If it is, find a function \(f\) such that\({\bf{F}} = \nabla f\).

\({\bf{F}}(x,y) = \left( {\ln y + 2x{y^2}} \right){\bf{i}} + \left( {3{x^2}{y^2} + x/y} \right){\bf{j}}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free