Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the surface integral.

\(\iint_{S}{F}\cdot dS\) , where\({\rm{F(x,y,z) = xzi - 2yj + 3xk}}\) and \({\rm{S}}\) is the sphere \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{\rm{2}}}{\rm{ = 4}}\) with outward orientation.

Short Answer

Expert verified

The surface integral \(\iint_{S}{F}\cdot dS=-\frac{64\pi }{3}\).

Step by step solution

01

Explanation of solution.

Note

\(\iint_{S}{F}\cdot dS=\iint_{D}{F}\cdot ndS\)

The unit normal vector is defined by n.

Note \({\rm{dS = }}\left| {{{\rm{r}}_{\rm{u}}}{\rm{ * }}{{\rm{r}}_{\rm{v}}}} \right|{\rm{dA}}\).

Only if a surface is orientable is the flux through it specified.

It's important to note that if the surface is orientable, each point will have two normal unit vectors.

So

\(dS=ndA=\pm \frac{\left( {{r}_{u}}*{{r}_{v}} \right)}{\left| {{r}_{u}}*{{r}_{v}} \right|}\left| {{r}_{u}}*{{r}_{v}} \right|dA=\pm \left( {{r}_{u}}*{{r}_{v}} \right)dA\).

02

Step 2:The parameterization for the sphere.

\({\rm{r(\theta }},\phi {\rm{) = 2sin}}\phi {\rm{cos\theta i + 2sin}}\phi {\rm{sin\theta j + 2cos}}\phi {\rm{k}}\)

Were \({\rm{\theta }} \in {\rm{(0,2\pi )}}\) and \({\rm{f}} \in {\rm{(0,\pi )}}\)

\(\begin{aligned}{{\rm{r}}_{\rm{\theta }}}\rm &= - 2 sin\phi {\rm{sin \theta i + 2 sin}}\phi {\rm{cos \theta j}}\\{{\rm{r}}_\phi }\rm &= 2 cos\phi {\rm{cos \theta i + 2 cos}}\phi {\rm{sin\theta j - 2 sin}}\phi {\rm{k}}\end{aligned}\)

\(\begin{aligned}{{\rm{r}}_{\rm{\theta }}}{\rm{ * }}{{\rm{r}}_\phi } &= \left| {\begin{array}{*{20}{c}}{\rm{i}}&{\rm{j}}&{\rm{k}}\\{{\rm{ - 2sin}}\phi {\rm{sin\theta }}}&{{\rm{2sin}}\phi {\rm{cos\theta }}}&0\\{{\rm{2cos}}\phi {\rm{cos\theta }}}&{{\rm{2cos}}\phi {\rm{sin\theta }}}&{{\rm{ - 2sin}}\phi }\end{array}} \right|\\{{\rm{r}}_{\rm{\theta }}}{\rm{ * }}{{\rm{r}}_\phi }\rm &= i\left| {\begin{array}{*{20}{c}}{{\rm{2sin}}\phi {\rm{cos\theta }}}&{\rm{0}}\\{{\rm{2cos}}\phi {\rm{sin\theta }}}&{{\rm{ - 2sin}}\phi }\end{array}} \right|{\rm{ - j}}\left| {\begin{array}{*{20}{c}}{{\rm{ - 2sin}}\phi {\rm{sin\theta }}}&{\rm{0}}\\{{\rm{2cos}}\phi {\rm{cos\theta }}}&{{\rm{ - 2sin}}\phi }\end{array}} \right|{\rm{ + k}}\left| {\begin{array}{*{20}{c}}{{\rm{ - 2sin}}\phi {\rm{sin\theta }}}&{{\rm{2sin}}\phi {\rm{cos\theta }}}\\{{\rm{2cos}}\phi {\rm{cos\theta }}}&{{\rm{2cos}}\phi {\rm{sin\theta }}}\end{array}} \right|\\{{\rm{r}}_{\rm{\theta }}}{\rm{ * }}{{\rm{r}}_\phi }\rm &= - 4si{{\rm{n}}^{\rm{2}}}\phi {\rm{cos\theta i - 4si}}{{\rm{n}}^{\rm{2}}}\phi {\rm{sin\theta j - 4sin}}\phi {\rm{cos}}\phi {\rm{k}}\end{aligned}\)

A note \({{\rm{r}}_{\rm{\theta }}}{\rm{ * }}{{\rm{r}}_\phi }\) is pointing towards the origin.

\({\rm{dS = - }}\left( {{{\rm{r}}_{\rm{\theta }}}{\rm{ * }}{{\rm{r}}_\phi }} \right){\rm{dA = }}\left( {{\rm{4si}}{{\rm{n}}^{\rm{2}}}\phi {\rm{cos\theta i + 4si}}{{\rm{n}}^{\rm{2}}}\phi {\rm{sin\theta j + 4sin}}\phi {\rm{cos}}\phi {\rm{k}}} \right){\rm{dA}}\).

\(\begin{aligned}\rm F(x,y,z) &= xzi - 2yj + 3xk\\{\rm{F(r(\theta ,}}\phi \rm )) &= 4sin\phi {\rm{cos}}\phi {\rm{cos\theta i - 4sin}}\phi {\rm{sin\theta j + 6sin}}\phi {\rm{cos\theta k}}{\rm{.}}\end{aligned}\)

03

Add the red and blue equations.

\(\iint_{S}{F} * dS=\int_{0}^{2\pi }{\int_{0}^{\pi }{1}}6{{\sin }^{3}}\phi \cos \phi {{\cos }^{2}}\theta -16{{\sin }^{3}}\phi {{\sin }^{2}}\theta +24{{\sin }^{2}}\phi \cos \phi \cos \theta d\phi d\theta \)

Use the property

\(\int_{\rm{a}}^{\rm{b}} {\rm{f}} {\rm{(x)dx = }}\int_{\rm{a}}^{\rm{b}} {\rm{f}} {\rm{(a + b - x)dx}}\)

Substitute \({\rm{a + b - x = u}}\)

Note \({\rm{sin(\pi - }}\phi {\rm{) = sin}}\phi {\rm{ }}\)and \(\cos {\rm{(\pi - }}\phi ){\rm{ = - cos}}\phi \)

\(\iint_{S}{F}\cdot dS=\int_{0}^{2\pi }{\left( \int_{0}^{\pi }{1}6{{\sin }^{3}}\phi (-\cos \phi ){{\cos }^{2}}\theta -16{{\sin }^{3}}\pi {{\sin }^{2}}\theta +24{{\sin }^{2}}\phi (-\cos \phi )\cos \theta d\phi \right)}d\theta {{e}^{i\theta }}\)

\(\iint_{S}{F}\cdot dS=\int_{0}^{2\pi }{\left( \int_{0}^{\pi }{-}16{{\sin }^{3}}\phi \cos \phi {{\cos }^{2}}\theta -16{{\sin }^{3}}\pi {{\sin }^{2}}\theta -24{{\sin }^{2}}\phi \cos \phi \cos \theta d\phi \right)}d\theta \)

Add the red and blue equations

\(\begin{aligned}\iint_{S}{F}\cdot dS&=\int_{0}^{2\pi }{\left( \int_{0}^{\pi }{-}32{{\sin }^{3}}\pi {{\sin }^{2}}\theta d\phi \right)}d\theta \\ \iint_{S}{F}\cdot dS&=-16\left( \int_{0}^{2\pi }{{{\sin }^{2}}}\theta d\theta \right)\left( \int_{0}^{\pi }{{{\sin }^{3}}}\pi d\phi \right) \\ & =-16(A)(B).\end{aligned}\)

\({\rm{A = }}\int_{\rm{0}}^{{\rm{2\pi }}} {{\rm{si}}{{\rm{n}}^{\rm{2}}}} {\rm{\theta d\theta }}\)

Substitute \({\rm{si}}{{\rm{n}}^{\rm{2}}}{\rm{\theta = }}\frac{{{\rm{1 - cos2\theta }}}}{{\rm{2}}}\)

\(\begin{array}{l}{\rm{A = }}\frac{{\rm{1}}}{{\rm{2}}}\int_{\rm{0}}^{{\rm{2\pi }}} {\rm{1}} {\rm{ - cos2\theta d\theta }}\\{\rm{A = }}\frac{{\rm{1}}}{{\rm{2}}}\left( {{\rm{\theta - }}\frac{{{\rm{sin2\theta }}}}{{\rm{2}}}} \right)_{\rm{0}}^{{\rm{2\pi }}}\end{array}\)

\({\rm{A = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ * 2\pi = \pi }}{\rm{.}}\)

\(\begin{array}{l}{\rm{B = }}\int_{\rm{0}}^{\rm{\pi }} {{\rm{si}}{{\rm{n}}^{\rm{3}}}} \phi d\phi \\{\rm{B = }}\int_0^{\rm{\pi }} {\left( {{\rm{si}}{{\rm{n}}^{\rm{2}}}\phi } \right)} {\rm{sin}}\phi d\phi \\{\rm{B = }}\int_0^{\rm{\pi }} {\left( {{\rm{1 - co}}{{\rm{s}}^{\rm{2}}}\phi } \right)} \sin \phi d\phi \end{array}\)

Substitute \({\rm{cos}}\phi {\rm{ = u}}\) and \({\rm{ - sin}}\phi d\phi {\rm{ = du}}\)

04

Step 4:Integration's limits will change.

Integration's limits will change from\(\int_{\rm{ - }} {{{\rm{0}}^{\rm{\pi }}}} {\rm{ to }}\mathop \smallint \nolimits_1^{ - 1} \)

\(\begin{array}{l}{\rm{B = }}\int_{\rm{1}}^{{\rm{ - 1}}} {{{\rm{u}}^{\rm{2}}}} {\rm{ - 1du}}\\{\rm{B = }}\left( {\frac{{{{\rm{u}}^{\rm{3}}}}}{{\rm{3}}}{\rm{ - u}}} \right)_{\rm{1}}^{{\rm{ - 1}}}{\rm{ = }}\frac{{\rm{4}}}{{\rm{3}}}\end{array}\)

\(\iint_{S}{F}\cdot dS=-16(\pi )\left( \frac{4}{3} \right)=-\frac{64\pi }{3}.\)

The surface integral\(\iint_{S}{F}\cdot dS=-\frac{64\pi }{3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\({\bf{F}}(x,y,z) = \left( {\cos z + x{y^2}} \right){\bf{i}} + x{e^{ - z}}{\bf{j}} + \left( {\sin y + {x^2}z} \right){\bf{k}}\), \(S\)is the surface of the solid bounded by the paraboloid \(z = {x^2} + {y^2}\) and the plane \(z = 4\).

A particle moves in a velocity field \(V(x,y) = \left\langle {{x^2},x + {y^2}} \right\rangle \). If it is at position \((2,1)\)at time \(t = 3\), estimate its location at time \(t = 3.01\).

Let \({\bf{F}}({\bf{x}}) = \left( {{r^2} - 2r} \right){\bf{x}}\), where \({\bf{x}} = \langle x,y\rangle \) and \(r = |{\bf{x}}|\). Use a CAS to plot this vector field in various domains until you can see what is happening. Describe the appearance of the plot and explain it by finding the points where \({\bf{F}}({\bf{x}}) = {\bf{0}}\).

  1. Show the parametric equation\(x = a\sin u\cos v,y = b\sin u\sin v,z = c\cos u,0 \le u \le \pi ,0 \le v \le 2\pi \) represents an ellipsoid.
  2. Draw the graph of an ellipsoid with the parametric equations\(x = a\sin u\cos v,y = b\sin u\sin v,z = c\cos u,0 \le u \le \pi ,0 \le v \le 2\pi {\rm{ for }}a = 1,b = 2,{\rm{ and }}c = 3\)
  3. Find the expression for surface area of the ellipsoid with the parametric equations\(x = a\sin u\cos v,y = b\sin u\sin v,z = c\cos u,0 \le u \le \pi ,0 \le v \le 2\pi {\rm{ for }}a = 1,b = 2,{\rm{ and }}c = 3\)

Use a graph of the vector field \({\bf{F}}\) and the curve \(C\) to guess whether the line integral of \({\bf{F}}\) over \(C\) is positive, negative, or zero. Then evaluate the line integral.\({\bf{F}}(x,y) = (x - y){\bf{i}} + xy{\bf{j}}\), \(C\) is the arc of the circle \({x^2} + {y^2} = 4\) traversed counterclockwise from \((2,0)\) to \((0, - 2)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free