Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

To determine the flux of the given vector field \(F\) across \(S\).

Short Answer

Expert verified

The flux of the given vector field \(F\) across \(S\) is \(0\).

Step by step solution

01

Concept of Flux of vector field

If\({\rm{F}}\)is a continuous vector field defined on an oriented surface\({\rm{S}}\)with unit normal vector\({\rm{n}}\), then the surface integral of Fover\({\rm{S}}\)is . This integral is also called the flux of\({\rm{F}}\)across\({\rm{S}}\)

The normal vector\({\rm{n}}\)to the tangent plane with tangent vectors\({{\rm{r}}_u}\)and\({{\rm{r}}_v}\)is\({\rm{n}} = {{\rm{r}}_u} \times {{\rm{r}}_v}\), where\({{\rm{r}}_u} = \frac{{\partial x}}{{\partial u}}\left( {{u_0},{v_0}} \right){\rm{i}} + \frac{{\partial y}}{{\partial u}}\left( {{u_0},{v_0}} \right){\rm{j}} + \frac{{\partial z}}{{\partial u}}\left( {{u_0},{v_0}} \right){\rm{k}}\)and\({{\rm{r}}_v} = \frac{{\partial x}}{{\partial v}}\left( {{u_0},{v_0}} \right){\rm{i}} + \frac{{\partial y}}{{\partial v}}\left( {{u_0},{v_0}} \right){\rm{j}} + \frac{{\partial z}}{{\partial v}}\left( {{u_0},{v_0}} \right){\rm{k}}\)

02

Calculation of the tangent vector\({{\rm{r}}_u}\)

Let \(x = u\cos t,y = {u^2},z = u\sin t\) and the parameter domain \(0 \le u \le 1,0 \le t \le 2\pi \)

Hence, \({\rm{F}}(x,y,z) = \left\langle {0,{u^2}, - u\sin t} \right\rangle \).

Substitute \(x = u\cos t,y = {u^2},z = u\sin t,v = t\) in \({{\rm{r}}_u} = \frac{{\partial x}}{{\partial u}}\left( {{u_0},{t_0}} \right){\rm{i}} + \frac{{\partial y}}{{\partial u}}\left( {{u_0},{t_0}} \right){\rm{j}} + \frac{{\partial z}}{{\partial u}}\left( {{u_0},{t_0}} \right){\rm{k}}\)

obtain the tangent vectors as follows:

\(\begin{array}{l}{{\rm{r}}_u} = \frac{{\partial x}}{{\partial u}}\left( {{u_0},{t_0}} \right){\rm{i}} + \frac{{\partial y}}{{\partial u}}\left( {{u_0},{t_0}} \right){\rm{j}} + \frac{{\partial z}}{{\partial u}}\left( {{u_0},{t_0}} \right){\rm{k}}\\{{\rm{r}}_u} = \frac{{\partial x}}{{\partial u}}(u\cos t){\rm{i}} + \frac{{\partial y}}{{\partial u}}\left( {{u^2}} \right){\rm{j}} + \frac{{\partial z}}{{\partial u}}(u\sin t){\rm{k}}\\{{\rm{r}}_u} = (\cos t){\rm{i}} + (2u){\rm{j}} + (\sin t){\rm{k}}\end{array}\)

Thus, \({{\rm{r}}_u} = \langle \cos t,2u,\sin t\rangle \).

03

Calculation of the tangent vector\({{\rm{r}}_t}\)

Substitute \(x = u\cos t,y = {u^2},z = u\sin t,v = t\) in \({{\rm{r}}_t} = \frac{{\partial x}}{{\partial t}}\left( {{u_0},{t_0}} \right){\rm{i}} + \frac{{\partial y}}{{\partial t}}\left( {{u_0},{t_0}} \right){\rm{j}} + \frac{{\partial z}}{{\partial t}}\left( {{u_0},{t_0}} \right){\rm{k}}\) obtain the tangent vectors as follows:

\(\begin{array}{l}{{\rm{r}}_t} = \frac{{\partial x}}{{\partial t}}\left( {{u_0},{t_0}} \right){\rm{i}} + \frac{{\partial y}}{{\partial t}}\left( {{u_0},{t_0}} \right){\rm{j}} + \frac{{\partial z}}{{\partial t}}\left( {{u_0},{t_0}} \right){\rm{k}}\\{{\rm{r}}_t} = \frac{{\partial x}}{{\partial t}}(u\cos t){\rm{i}} + \frac{{\partial y}}{{\partial t}}\left( {{u^2}} \right){\rm{j}} + \frac{{\partial z}}{{\partial t}}(u\sin t){\rm{k}}\\{{\rm{r}}_t} = ( - u\sin t){\rm{i}} + (0){\rm{j}} + (u\cos t){\rm{k}}\\{{\rm{r}}_t} = \langle \cos t,2u,\sin t\rangle \end{array}\)

Thus, \({{\rm{r}}_t} = \langle \cos t,2u,\sin t\rangle \).

04

Calculation of the normal vector\(n\)

Substitute \({{\rm{r}}_u} = \langle \cos t,2u,\sin t\rangle ,{{\rm{r}}_t} = \langle \cos t,2u,\sin t\rangle \) in \({r_u} \times {{\rm{r}}_v}\)obtain the normal vector to the tangent plane as follows:

\(\begin{array}{l}{\rm{n}} = {{\rm{r}}_u} \times {{\rm{r}}_v}\\{\rm{n}} = \left| {\begin{array}{*{20}{c}}{\rm{i}}&{\rm{j}}&{\rm{k}}\\{\cos t}&{2u}&{\sin t}\\{ - u\sin t}&0&{u\cos t}\end{array}} \right|\\{\rm{n}} = \left( {2{u^2}\cos t} \right){\rm{i}} - \left( {u{{\cos }^2}t + u{{\sin }^2}t} \right){\rm{j}} + \left( {2{u^2}\sin t} \right){\rm{k}}\\{\rm{n}} = \left( {2{u^2}\cos t} \right){\rm{i}} - \left( {u\left( {{{\cos }^2}t + {{\sin }^2}t} \right)} \right){\rm{j}} + \left( {2{u^2}\sin t} \right){\rm{k}}\\{\rm{n}} = \left( {2{u^2}\cos t} \right){\rm{i}} - u{\rm{j}} + \left( {2{u^2}\sin t} \right){\rm{k}}\end{array}\)

Thus, \({\rm{n}} = \left\langle {2{u^2}\cos t, - u,2{u^2}\sin t} \right\rangle \)

05

Calculation of the integral

Substitute \({\rm{n}} = \left\langle {2{u^2}\cos t, - u,2{u^2}\sin t} \right\rangle ,{\rm{F}}(x,y,z) = \left\langle {0,{u^2}, - u\sin t} \right\rangle \) in obtain the surface integral as shown below:

The above equation can be further simplified as shown below:

Thus, the flux of the given vector field \(F\) across \(S\) is \(0\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free