\({\rm{S}}\) is to be above the triangle with vertices \(\left( {{\rm{0,0}}} \right){\rm{, }}\left( {{\rm{1,0}}} \right){\rm{,}}\)and \(\left( {{\rm{1,2}}} \right){\rm{.\;}}\)
\({\rm{D}}\) is the area within the right-angled triangle shown below:
Equation of the line joining \((0,0)\) and \({\rm{(1,2)}}\) is
\(\begin{aligned}\frac{{{\rm{y - 0}}}}{{{\rm{x - 0}}}}\rm &= \frac{{{\rm{2 - 0}}}}{{{\rm{1 - 0}}}}\\\rm y&= 2 x\end{aligned}\)
Define the \({\rm{D}}\) as
\({\rm{\{ (x,y)}} \in {\rm{D}}\mid {\rm{0}} \le y \le {\rm{2x,}}\;\;\;{\rm{0}} \le x \le 1\} \)

\(\begin{aligned}\frac{{{\rm{y - 0}}}}{{{\rm{x - 0}}}}\rm &= \frac{{{\rm{2 - 0}}}}{{{\rm{1 - 0}}}}\\\rm y&= 2 x\end{aligned}\)\(\begin{aligned}\frac{{{\rm{y - 0}}}}{{{\rm{x - 0}}}}\rm &= \frac{{{\rm{2 - 0}}}}{{{\rm{1 - 0}}}}\\\rm y&= 2 x\end{aligned}\)