Chapter 13: Q24E (page 788)
Use Exercise 22 to find the centroid of the triangle with vertices \((0,0),(a,0)\), and \((a,b)\), where \(a > 0\) and \(b > 0\).
Short Answer
The centroid of triangle with vertices \((0,0),(a,0),(a,b)\) is \(\left( {\frac{2}{3}a,\frac{1}{3}b} \right)\).
Step by step solution
given information
Vertices of triangle are \((0,0),(a,0),(a,b)\).
expression for coordinates of centroid and for area of triangle
Write the expression for coordinates of centroid\((\bar x,\bar y)\).
\(\begin{array}{l}\bar x = \frac{1}{{2A}}\oint_C {{x^2}} dy.........(1)\\\bar y = - \frac{1}{{2A}}\oint_C {{y^2}} dx.......(2)\end{array}\)
Here,
\(A\)is the area.
Write the expression for area of triangle \((A)\).
\(A = \frac{1}{2}ab\)
Here,
\(a\) and \(b\) are sides of triangle
parametric equations of curve \({C_1},0 \le t \le a\) and differentiate equation (3) & (4) with respect to \(t\)
The curve \(C\) is divided into three sub-curves \({C_1},{C_2}\) and \({C_3}\).
Write the parametric equations of curve \({C_1},0 \le t \le a\).
\(\begin{array}{l}x = t.........(3)\\y = 0.........(4)\end{array}\)
Differentiate equation (3) with respect to \(t\).
\(\begin{align} & \frac{d}{dt}(x)=\frac{d}{dt}(t) \\ & \frac{dx}{dt}=1\,\,\,\,\,\,\,\,\left\{ \because \frac{d}{dt}(t)=1 \right\} \\ & dx=dt \end{align}\)
Differentiate equation (4) with respect to \(t\).
\(\begin{align} & \frac{d}{dt}(y)=\frac{d}{dt}(0) \\ & \frac{dy}{dt}=0\,\,\,\,\,\left\{ \because \frac{d}{dt}(0)=0 \right\} \\ & dy=0dt \end{align}\)
parametric equation of curve \({C_2},0 \le t \le b\) and differentiate equation (5) & (6) with respect to \(t\)
Write the parametric equation of curve \({C_2},0 \le t \le b\).
\(\begin{array}{l}x = a.......(5)\\y = t......(6)\end{array}\)
Differentiate equation (5) with respect to \(t\).
\(\begin{align} & \frac{d}{dt}(x)=\frac{d}{dt}(a) \\ & \frac{dx}{dt}=0\,\,\,\,\,\,\,\left\{ \because \frac{d}{dt}(k)=0 \right\} \\ & dx=0dt \end{align}\)
Differentiate equation (6) with respect to \(t\).\(t\)
\(\begin{align} & \frac{d}{dt}(y)=\frac{d}{dt}(t) \\ & \frac{dy}{dt}=1\,\,\,\,\,\,\,\,\left\{ \because \frac{d}{dt}(t)=1 \right\} \\ & dy=dt \end{align}\)
Write the parametric equations of curve \({C_3},t = a\) to \(t = 0\) and differentiate equation (7) & (8) with respect to a
Write the parametric equations of curve \({C_3},t = a\) to \(t = 0\).
\(\begin{array}{l}x = t........(7)\\y = \frac{b}{a}t..........(8)\end{array}\)
Differentiate equation (7) with respect to \(t\).
\(\begin{align} & \frac{d}{dt}(x)=\frac{d}{dt}(t) \\ & \frac{dx}{dt}=1\,\,\,\,\,\,\,\,\,\left\{ \because \frac{d}{dt}(t)=1 \right\} \\ & dx=dt \end{align}\)
Differentiate equation \((8)\) with respect to \(t\).
\(\begin{align} & \frac{d}{dt}(y)=\frac{d}{dt}\left( \frac{b}{a}t \right) \\ & \frac{dy}{dt}=\frac{b}{a}(1)\,\,\,\,\,\,\,\,\,\left\{ \because \frac{d}{dt}(t)=1 \right\} \\ & dy=\frac{b}{a}dt \end{align}\)
value of \(\oint_C {{x^2}} dy\)
Find the value of \(\oint_C {{x^2}} dy\).
\(\begin{align} & \oint_{C}{{{x}^{2}}}dy=\int_{{{C}_{1}}}{{{x}^{2}}}dy+\int_{{{C}_{2}}}{{{x}^{2}}}dy+\int_{{{C}_{3}}}{{{x}^{2}}}dy \\ & =\int_{0}^{a}{{{t}^{2}}}(0dt)+\int_{0}^{b}{{{a}^{2}}}dt+\int_{a}^{0}{{{t}^{2}}}\left( \frac{b}{a}dt \right) \\ & =0+{{a}^{2}}\int_{0}^{b}{d}t+\frac{b}{a}\int_{a}^{0}{{{t}^{2}}}dt\,\,\,\,\,\,\,\,\,\left\{ \because \int{0}dt=0 \right\} \\ & ={{a}^{2}}[t]_{0}^{b}+\frac{b}{a}\left[ \frac{{{t}^{3}}}{3} \right]_{a}^{0}\,\,\,\,\,\,\,\,\,\,\,\left\{ \because \int{d}t=t,\int{{{t}^{n}}}dt=\frac{{{t}^{n+1}}}{n+1} \right\} \end{align}\)
Apply limits and simplify the equation.
\(\begin{aligned}\oint_C {{x^2}} dy & = {a^2}(b - 0) + \frac{b}{a}\left( {\frac{{{0^3}}}{3} - \frac{{{a^3}}}{3}} \right)\\ & = {a^2}b - \frac{b}{a}\left( {\frac{{{a^3}}}{3}} \right)\\ & = {a^2}b - \frac{1}{3}{a^2}b\\ & = \frac{2}{3}{a^2}b\end{aligned}\)
Substitute \(\frac{2}{3}{a^2}b\) for \(\oint_C {{x^2}} dy\) and \(\frac{1}{2}ab\) for \(A\) in equation (1),
\(\left( \begin{aligned}\bar x & = \frac{1}{{2\left( {\frac{1}{2}ab} \right)}}\left( {\frac{2}{3}{a^2}b} \right)\\ & = \frac{1}{{ab}}\left( {\frac{2}{3}{a^2}b} \right)\\ & = \frac{2}{3}a\end{aligned} \right)\)
value of \(\oint_C {{y^2}} dx\).
Find the value of \(\oint_C {{y^2}} dx\).
\(\begin{aligned}\oint_C {{y^2}} dx & = \int_{{C_1}} {{y^2}} dx + \int_{{C_2}} {{y^2}} dx + \int_{{C_3}} {{y^2}} dx\\ & = \int_0^a 0 dt + \int_0^b {{t^2}} (0dt) + \int_a^0 {{{\left( {\frac{b}{a}t} \right)}^2}} dt\\ & = 0 + 0 + \frac{{{b^2}}}{{{a^2}}}\int_a^0 {{t^2}} dt\\ & = \frac{{{b^2}}}{{{a^2}}}\left( {\frac{{{t^3}}}{3}} \right)_a^0\end{aligned}\)
Apply limits and simplify the equation.
\(\begin{aligned}\oint_C {{y^2}} dx & = \frac{{{b^2}}}{{{a^2}}}\left( {\frac{{{0^3}}}{3} - \frac{{{a^3}}}{3}} \right)\\ & = \frac{{{b^2}}}{{{a^2}}}\left( { - \frac{{{a^3}}}{3}} \right)\\ & = - \frac{1}{3}a{b^2}\end{aligned}\)
Substitute \( - \frac{1}{3}a{b^2}\,\)for \(\oint_C {{y^2}} dx\)and \(\frac{1}{2}ab\)for \(A\) in equation (2),
\(\begin{aligned}\bar y & = - \frac{1}{{2\left( {\frac{1}{2}ab} \right)}}\left( { - \frac{1}{3}a{b^2}} \right)\\ & = \frac{1}{{ab}}\left( {\frac{1}{3}a{b^2}} \right)\\ & = \frac{1}{3}b\end{aligned}\)
Thus, the centroid of triangle with vertices a\(\left( {0,0} \right),\left( {a,{\rm{ }}0} \right),(a,{\rm{ }}b)\) is \(\left( {\frac{2}{3}a,\frac{1}{3}b} \right).\)
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!