Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Prove the identity, assuming that the appropriate partial derivatives exist and are continuous. If f is a scalar field and F, G are vector fields, then fF, F.G , and F X G are defined by

\(\begin{array}{l}(fF)(x,y,z) = f(x,y,z)F(x,y,z)\\(F \times G)(x,y,z) = F(x,y,z) \times G(x,y,z)\\(F \times G)(x,y,z) = F(x,y,z) \times G(x,y,z)\end{array}\)

\(24.\;curl(fF) = f\;curl\;\,F + (\nabla f) \times F\)

Short Answer

Expert verified

The given expression is proved

Step by step solution

01

The data available

Let F and G vector fields given by,

\(F(x,y,z) = {F_1}i + {F_2}j + {F_3}k\)

We want to show

\(curl(fF) = f\;curl\;F + F \times (\nabla f)\)

02

Simplification

\(\begin{array}{c}curl(fF) = curl\left( {f{F_1}i + f{F_2}j + f{F_3}k} \right)\\ = \left( {\frac{{\partial f{F_3}}}{{\partial y}} - \frac{{\partial f{F_2}}}{{\partial z}}} \right)i - \left( {\frac{{\partial f{F_3}}}{{\partial x}} - \frac{{\partial f{F_1}}}{{\partial z}}} \right)j + \left( {\frac{{\partial f{F_2}}}{{\partial z}} - \frac{{\partial f{F_1}}}{{\partial y}}} \right)k\\ = \left( {\left( {f\frac{{\partial {F_3}}}{{\partial y}} + {F_3}\frac{{\partial f}}{{\partial y}}} \right) - \left( {f\frac{{\partial {F_2}}}{{\partial z}} + {F_2}\frac{{\partial f}}{{\partial z}}} \right)} \right)i - \left( {\left( {f\frac{{\partial {F_3}}}{{\partial x}} + {F_3}\frac{{\partial f}}{{\partial x}}} \right) - \left( {f\frac{{\partial {F_1}}}{{\partial z}} + {F_1}\frac{{\partial f}}{{\partial z}}} \right)} \right)j + \\\left( {\left( {f\frac{{\partial {F_2}}}{{\partial x}} + {F_2}\frac{{\partial f}}{{\partial x}}} \right) - \left( {f\frac{{\partial {F_1}}}{{\partial y}} + {F_1}\frac{{\partial f}}{{\partial y}}} \right)} \right)k\end{array}\)

03

Rearrangement and further Simplification

\(\begin{array}{c}curl(fF) = \left( {{F_3}\frac{{\partial f}}{{\partial y}} - {F_2}\frac{{\partial f}}{{\partial z}}} \right)i - \left( {{F_3}\frac{{\partial f}}{{\partial x}} - {F_1}\frac{{\partial f}}{{\partial z}}} \right)j + \left( {{F_2}\frac{{\partial f}}{{\partial x}} - {F_1}\frac{{\partial f}}{{\partial y}}} \right)k\\ + \left( {f\frac{{\partial {F_3}}}{{\partial y}} - f\frac{{\partial {F_2}}}{{\partial z}}} \right)i - \left( {f\frac{{\partial {F_3}}}{{\partial x}} - f\frac{{\partial {F_1}}}{{\partial z}}} \right)j + \left( {f\frac{{\partial {F_2}}}{{\partial z}} - f\frac{{\partial {F_1}}}{{\partial y}}} \right)k\end{array}\)

Let us take f common

\(\begin{array}{c}curl(fF) = \left( {{F_3}\frac{{\partial f}}{{\partial y}}i - {F_2}\frac{{\partial f}}{{\partial z}}i} \right) - \left( {{F_3}\frac{{\partial f}}{{\partial x}}j - {F_1}\frac{{\partial f}}{{\partial z}}j} \right) + \left( {{F_2}\frac{{\partial f}}{{\partial x}}k - {F_1}\frac{{\partial f}}{{\partial y}}k} \right)\\ + f\left\{ { + \left( {\frac{{\partial {F_3}}}{{\partial y}} - \frac{{\partial {F_2}}}{{\partial z}}} \right)i - \left( {\frac{{\partial {F_3}}}{{\partial x}} - \frac{{\partial {F_1}}}{{\partial z}}} \right)j + \left( {\frac{{\partial {F_2}}}{{\partial z}} - \frac{{\partial {F_1}}}{{\partial y}}} \right)k} \right\}\end{array}\)

Group the terms with same coefficients

\(curl(fF) = {F_3}\left( {\frac{{\partial f}}{{\partial y}}i - \frac{{\partial f}}{{\partial x}}j} \right) + {F_1}\left( {\frac{{\partial f}}{{\partial z}}j - \frac{{\partial f}}{{\partial y}}k} \right) + {F_2}\left( {\frac{{\partial f}}{{\partial x}}k - \frac{{\partial f}}{{\partial z}}i} \right) + f\;curl\;F\)

04

Equation as determinant

\(curl(fF) = {F_3}\left| {\begin{array}{*{20}{c}}i&j\\{\frac{{\partial f}}{{\partial x}}}&{\frac{{\partial f}}{{\partial y}}}\end{array}} \right| + {F_1}\left| {\begin{array}{*{20}{c}}j&k\\{\frac{{\partial f}}{{\partial y}}}&{\frac{{\partial f}}{{\partial z}}}\end{array}} \right| + {F_2}\left| {\begin{array}{*{20}{c}}k&i\\{\frac{{\partial f}}{{\partial z}}}&{\frac{{\partial f}}{{\partial z}}}\end{array}} \right| + f\;curl\;F\)

Rewrite the determinant terms so that we can group them into three into three determinant.

\( = {F_1}\left| {\begin{array}{*{20}{c}}j&k\\{\frac{{\partial f}}{{\partial y}}}&{\frac{{\partial f}}{{\partial z}}}\end{array}} \right| - {F_2}\left| {\begin{array}{*{20}{c}}k&i\\{\frac{{\partial f}}{{\partial x}}}&{\frac{{\partial f}}{{\partial z}}}\end{array}} \right| + {F_3}\left| {\begin{array}{*{20}{c}}i&j\\{\frac{{\partial f}}{{\partial x}}}&{\frac{{\partial f}}{{\partial y}}}\end{array}} \right| + f\;curl\;F\)

05

Determinant and it’s solution

We can write

\(curl(fF) = \left| {\begin{array}{*{20}{c}}i&j&k\\{\frac{{\partial f}}{{\partial x}}}&{\frac{{\partial f}}{{\partial y}}}&{\frac{{\partial f}}{{\partial z}}}\\{{F_1}}&{{F_2}}&{{F_3}}\end{array}} \right| + f\;curl\;F\)

\(\begin{array}{c}curl(fF) = \left( {\frac{{\partial f}}{{\partial x}}i + \frac{{\partial f}}{{\partial y}}j + \frac{{\partial f}}{{\partial z}}k} \right) \times \left( {{F_1}i + {F_2}j + {F_3}k} \right) + f\;curl\;F\\ = \nabla f \times F + f\;curl\;F\end{array}\)

Which is the required equation to be proved.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free