Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Verify that \({\mathop{\rm div}\nolimits} {\bf{E}} = 0\) for the electric field \({\bf{E}}({\bf{x}}) = \frac{{\varepsilon Q}}{{|{\bf{x}}{|^3}}}{\bf{x}}\).

Short Answer

Expert verified

The gradient field of the function is:

\(\frac{x}{{\sqrt {{x^2} + {y^2} + {z^2}} }}{\bf{i}} + \frac{y}{{\sqrt {{x^2} + {y^2} + {z^2}} }}{\bf{j}} + \frac{z}{{\sqrt {{x^2} + {y^2} + {z^2}} }}{\bf{k}}\).

Step by step solution

01

Statement of divergence theorem

The divergence theorem is a mathematical expression of the physical truth that, in the absence of matter creation or destruction, the density within a region of space can only be changed by allowing it to flow into or out of the region through its boundary.

02

Find the gradient field of the function.

Consider the given information.

\(f(x,y,z) = \sqrt {{x^2} + {y^2} + {z^2}} \)

Recall that,

\(\begin{array}{c}\nabla f = \frac{{\partial f}}{{\partial x}}(x,y,z){\bf{i}} + \frac{{\partial f}}{{\partial y}}(x,y,z){\bf{j}} + \frac{{\partial f}}{{\partial z}}(x,y,z){\bf{k}}\\ = \frac{{\frac{{\partial \left( {{x^2} + {y^2} + {z^2}} \right)}}{{\partial x}}}}{{\sqrt {{x^2} + {y^2} + {z^2}} }}{\bf{i}} + \frac{{2\frac{{\partial \left( {{x^2} + {y^2} + {z^2}} \right)}}{{\partial y}}}}{{2\sqrt {{x^2} + {y^2} + {z^2}} }}{\bf{j}} + \frac{{\frac{{\partial \left( {{x^2} + {y^2} + {z^2}} \right)}}{{\partial z}}}}{{2\sqrt {{x^2} + {y^2} + {z^2}} }}{\bf{k}}\\ = \frac{{2x}}{{2\sqrt {{x^2} + {y^2} + {z^2}} }}{\bf{i}} + \frac{{2y}}{{2\sqrt {{x^2} + {y^2} + {z^2}} }}{\bf{j}} + \frac{{2z}}{{2\sqrt {{x^2} + {y^2} + {z^2}} }}{\bf{k}}\\ = \frac{x}{{\sqrt {{x^2} + {y^2} + {z^2}} }}{\bf{i}} + \frac{y}{{\sqrt {{x^2} + {y^2} + {z^2}} }}{\bf{j}} + \frac{z}{{\sqrt {{x^2} + {y^2} + {z^2}} }}{\bf{k}}\end{array}\)

Therefore, gradient field is \(\frac{x}{{\sqrt {{x^2} + {y^2} + {z^2}} }}{\bf{i}} + \frac{y}{{\sqrt {{x^2} + {y^2} + {z^2}} }}{\bf{j}} + \frac{z}{{\sqrt {{x^2} + {y^2} + {z^2}} }}{\bf{k}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free