Chapter 13: Q21E (page 781)
Is the vector field shown in the figure conservative?
Explain.
Short Answer
The vector field is not a conservative
Chapter 13: Q21E (page 781)
Is the vector field shown in the figure conservative?
Explain.
The vector field is not a conservative
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the area of the surface.
The part of the plane \(x + 2y + 3z = 1\) that lies inside the cylinder \({x^2} + {y^2} = 3\) .
(a) Find a function \(f\) such that \({\bf{F}} = \nabla f\) and (b) use part (a) to evaluate \(\int_C {\bf{F}} \cdot d{\bf{r}}\) along the given curve \(C\).
\({\bf{F}}(x,y,z) = \left( {{y^2}z + 2x{z^2}} \right){\bf{i}} + 2xyz{\bf{j}} + \left( {x{y^2} + 2{x^2}z} \right){\bf{k}}\),
\({\bf{F}}(x,y,z) = {x^2}\sin y{\bf{i}} + x\cos y{\bf{j}} - xz\sin y\,{\bf{k}}\), \(S\)is the "fat sphere" \({x^8} + {y^8} + {z^8} = 8\).
Evaluate the line integral\(\int_{\rm{C}} {\rm{F}} {\rm{ \times dr}}\) where \({\rm{C}}\)is given by the vector function\({\rm{r(t)}}\).
\(\begin{array}{c}{\rm{F(x,y,z) = (x + y)i + (y - z)j + }}{{\rm{z}}^{\rm{2}}}{\rm{k,}}\\{\rm{r(t) = }}{{\rm{t}}^{\rm{2}}}{\rm{i + }}{{\rm{t}}^{\rm{3}}}{\rm{j + }}{{\rm{t}}^{\rm{2}}}{\rm{k,}}\;\;\;{\rm{0}} \le {\rm{t}} \le {\rm{1}}\end{array}\)
Find the value of\(\iint_S {{x^2}}yzdS\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.