Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the gradient vector field of \({\rm{f}}\).

\(f(x,y) = x{e^{xy}}\)

Short Answer

Expert verified

The gradient vector field of \(f\) is \(\overline V f\left( {x,y} \right) = {e^{xy}}\left( {1 + xy} \right)i + \left( {{x^2}{e^{xy}}} \right)j\).

Step by step solution

01

Given Information.

It is given that \(f(x,y){\rm{ }} = {\rm{ }}x{e^{xy}}\).

02

Find the gradient vector field.

\(f(x,y){\rm{ }} = {\rm{ }}x{e^{xy}}\)

\(\overline V f\left( {x,y} \right) = {f_x}\left( {x,y} \right)i + {f_y}\left( {x,y} \right)j\)

Applying the formula to the given function and using summation derivation rule, we get

\(\begin{aligned}\overline V f\left( {x,y} \right) &= {f_x}\left( {x,y} \right)i + {f_y}\left( {x,y} \right)j \\ &= \frac{\partial }{{\partial x}}\left( {x{e^{xy}}} \right)i + \frac{\partial }{{\partial y}}\left( {x{e^{xy}}} \right)j \\ &= \frac{\partial }{{\partial x}}\left( {\mathop{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{x} }\limits_u \mathop {{{\mathop{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{e} }\limits_v}^{xy}}}\limits_{} } \right)i + x\frac{\partial }{{\partial y}}\left( {{e^{xy}}} \right)j\\&= \left( {1 \cdot {e^{xy}} + x \cdot y{e^{xy}}} \right)i + x\frac{\partial }{{\partial y}}\left( {{e^{xy}}} \right)j \\&= {e^{xy}}\left( {1 + xy} \right)i + \left( {{x^2}{e^{xy}}}\right)j \\\end{aligned} \)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Evaluate the line integral, where C is the given curve. \(\) \(\int_{\rm{C}} {\left( {{{\rm{x}}^{\rm{2}}}{{\rm{y}}^{\rm{3}}}{\rm{ - }}\sqrt {\rm{x}} } \right)} {\rm{dy,}}\) C is the arc of the curve \({\rm{y = }}\sqrt {\rm{x}} \)from \({\rm{(1,1)}}\) to \({\rm{(4,2)}}\).

Evaluate the line integral\(\int_{\rm{C}} {\rm{F}} {\rm{ \times dr}}\) where \({\rm{C}}\)is given by the vector function\({\rm{r(t)}}\).

\(\begin{array}{c}{\rm{F(x,y,z) = (x + y)i + (y - z)j + }}{{\rm{z}}^{\rm{2}}}{\rm{k,}}\\{\rm{r(t) = }}{{\rm{t}}^{\rm{2}}}{\rm{i + }}{{\rm{t}}^{\rm{3}}}{\rm{j + }}{{\rm{t}}^{\rm{2}}}{\rm{k,}}\;\;\;{\rm{0}} \le {\rm{t}} \le {\rm{1}}\end{array}\)

Determine whether of not \({\bf{F}}\) is a conservative vector field. If it is, find a function \(f\) such that\({\bf{F}} - \nabla f\).

\({\bf{F}}(x,y) - \left( {y{e^x} + \sin y} \right){\bf{i}} + \left( {{e^x} + x\cos y} \right){\bf{j}}\)

If you have a CAS that plots vector fields (the command is field plot in Maple and Plot Vector Field or Vector Plot in Mathematica), use it to plot\({\bf{F}}(x,y) = \left( {{y^2} - 2xy} \right){\bf{i}} + \left( {3xy - 6{x^2}} \right){\bf{j}}\)

Explain the appearance by finding the set of points \((x,y)\) such that \({\bf{F}}(x,y) = {\bf{0}}\).

(a). To show: The parametric equations \(x = a\cosh u\cos v,y = b\cosh u\sin v,z = c\sinh u\) represent a hyperboloid of one sheet.

(b). To draw: The graph of a hyperboloid of one sheet with the parametric equations \(x = a\cosh u\cos v,y = b\cosh u\sin v,z = c\sinh u\) for \(a = 1,b = 2\), and \(c = 3\).

(c). To find: The expression for surface area of the hyperboloid of one sheet with the parametric equations \(x = a\cosh u\cos v,y = b\cosh u\sin v,z = c\sinh u\) for \(a = 1,b = 2\), and \(c = 3\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free