Chapter 13: Q1E (page 816)
To find: The approximate value of\(\iint_{S}{{{e}^{-0.1(x+y+z)}}}dS \)
Short Answer
The approximate value of \(\iint_{S}{{{e}^{-0.1(x+y+z)}}}dS \) is 49.09.
Chapter 13: Q1E (page 816)
To find: The approximate value of\(\iint_{S}{{{e}^{-0.1(x+y+z)}}}dS \)
The approximate value of \(\iint_{S}{{{e}^{-0.1(x+y+z)}}}dS \) is 49.09.
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the value of\(\iint_S xzdS\)
Evaluate the line integral\(\int_{\rm{C}} {\rm{F}} {\rm{ \times dr}}\) where \({\rm{C}}\)is given by the vector function\({\rm{r(t)}}\).
\({\rm{F(x,y) = xyi + 3}}{{\rm{y}}^{\rm{2}}}{\rm{j}}\)
(a) Find a function \(f\) such that \({\bf{F}} = \nabla f\) and (b) use part (a) to evaluate \(\int_C {\bf{F}} \cdot d{\bf{r}}\) along the given curve \(C\).
\({\bf{F}}(x,y,z) = yz{e^{xz}}{\bf{i}} + {e^{xz}}{\bf{j}} + xy{e^{xz}}{\bf{k}}\),
(a) Find a function \(f\) such that \({\bf{F}} = \nabla f\) and (b) use part (a) to evaluate \(\int_C {\bf{F}} \cdot d{\bf{r}}\) along the given curve \(C\).
\({\bf{F}}(x,y,z) = \left( {{y^2}z + 2x{z^2}} \right){\bf{i}} + 2xyz{\bf{j}} + \left( {x{y^2} + 2{x^2}z} \right){\bf{k}}\),
(a) Find a function \(f\) such that \({\bf{F}} - \nabla f\) and (b) use part (a) to evaluate \(\int_C {\bf{F}} \cdot d{\bf{r}}\) along the given curve\(C\).
\({\bf{F}}(x,y) - x{y^2}{\bf{i}} + {x^2}y{\bf{j}}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.