Chapter 13: Q1E (page 805)
\[ 1. r(u,v) = (u + v)i + (3 - v)j + (1 + 4u + 5v)k\]
Short Answer
PLANE
Chapter 13: Q1E (page 805)
\[ 1. r(u,v) = (u + v)i + (3 - v)j + (1 + 4u + 5v)k\]
PLANE
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the line integral, where\({\rm{C}}\) is the given curve.
\({\rm{(0,0,0) to (1,2,3)}}\)\(\int_{\rm{C}} {\rm{x}} {{\rm{e}}^{{\rm{yz}}}}{\rm{ds}}\)Is the line segment from\({\rm{(0,0,0) to (1,2,3)}}\)
\({\bf{F}}(x,y,z) = {e^y}\tan z{\bf{i}} + y\sqrt {3 - {x^2}} {\bf{j}} + x\sin y{\bf{k}}\) , \(S\) is the surface of the solid that lies above the \(xy\)-plane and below the surface
\(z = 2 - {x^4} - {y^4}, - 1,,x,,1\)\(- 1,,y,,1\)
To determine: The area of the surface \(y = {x^3},0 \le x \le 2\) rotating about \(x\)-axis.
Determine whether of not \({\bf{F}}\) is a conservative vector field. If it is, find a function \(f\) such that\({\bf{F}} - \nabla f\).
\({\bf{F}}(x,y) - (xy\cosh xy + \sinh xy){\bf{i}} + \left( {{x^2}\cosh xy} \right){\bf{j}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.