Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The figure shows a vector field\({\rm{F}}\)and two curves \({{\rm{C}}_{\rm{1}}}\)and\({{\rm{C}}_{\scriptstyle{\rm{2}}\atop\scriptstyle}}\). Are the line integrals of \({\rm{F}}\) over \({{\rm{C}}_{\rm{1}}}\)and \({{\rm{C}}_{\scriptstyle{\rm{2}}\atop\scriptstyle}}\)positive, negative, or zero?Explain.

Short Answer

Expert verified

Line integral over \({{\rm{C}}_{\scriptstyle{\rm{1}}\atop\scriptstyle}}\)is positive.

Line integral over \({{\rm{C}}_{\scriptstyle{\rm{2}}\atop\scriptstyle}}\)is negative.

Step by step solution

01

Defining Integral over\({\rm{C}}\).

\(\begin{array}{c}\int_{\rm{C}} {\rm{F}} \cdot {\rm{dr = }}\int_{\rm{C}} {\rm{F}} \cdot {\rm{Tdt}}\\{\rm{ = }}\int_{\rm{C}} {\rm{|}} {\rm{F||T|cos\theta dt}}\end{array}\)

Where\(\theta \)is the angle between tangent and vector field

When \(\theta \)is acute, \({\rm{cos\theta }}\)is positive and it is negative \(\theta \)is obtuse.

02

Finding the line Integral.

The tangent vector makes an acute angle with the vector field at all points on\({{\rm{C}}_{\scriptstyle{\rm{1}}\atop\scriptstyle}}\).

Therefore, the line integral over \({{\rm{C}}_{\scriptstyle{\rm{1}}\atop\scriptstyle}}\)is positive.

The tangent vector makes an obtuse angle with the vector field at all points on\({{\rm{C}}_{\scriptstyle{\rm{2}}\atop\scriptstyle}}\).

Therefore, the line integral over \({{\rm{C}}_{\scriptstyle{\rm{2}}\atop\scriptstyle}}\)is negative.

Hence,

Line integral over \({{\rm{C}}_{\scriptstyle{\rm{1}}\atop\scriptstyle}}\)is positive and Line integral over \({{\rm{C}}_{\scriptstyle{\rm{2}}\atop\scriptstyle}}\)is negative.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free